Skip to main content

Current Status of the Polyamine Research Field

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 720))

Abstract

This chapter provides an overview of the polyamine field and introduces the 32 other chapters that make up this volume. These chapters provide a wide range of methods, advice, and background relevant to studies of the function of polyamines, the regulation of their content, their role in disease, and the therapeutic potential of drugs targeting polyamine content and function. The methodology provided in this new volume will enable laboratories already working in this area to expand their experimental techniques and facilitate the entry of additional workers into this rapidly expanding field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen SS (1998) A guide to the polyamines. Oxford University Press, New York

    Google Scholar 

  2. Naka Y, Watanabe K, Sagor GH, Niitsu M, Pillai MA, Kusano T, Takahashi Y (2010) Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol Biochem 48:527–533

    PubMed  CAS  Google Scholar 

  3. Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot (Lond) 105:1–6

    CAS  Google Scholar 

  4. Williams-Ashman HG (1965) NICOLAS LOUIS VAUQUELIN (1763-1829). Invest Urol 2:605–613

    PubMed  CAS  Google Scholar 

  5. Lee J, Michael AJ, Martynowski D, Goldsmith EJ, Phillips MA (2007) Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decarboxylases. J Biol Chem 282:27115–27125

    PubMed  CAS  Google Scholar 

  6. Morris DR, Pardee AB (1966) Multiple pathways of putrescine biosynthesis in Escherichia coli. J Biol Chem 241:3129–3135

    PubMed  CAS  Google Scholar 

  7. Tabor H, Rosenthal SM, Tabor CW (1958) The biosynthesis of spermidine and spermine from putrescine and methionine. J Biol Chem 233:907–914

    PubMed  CAS  Google Scholar 

  8. Pegg AE (2009) S-adenosylmethionine decarboxylase, vol 46. Portland, London

    Google Scholar 

  9. Bale S, Ealick SE (2010) Structural biology of S-adenosylmethionine decarboxylase. Amino Acids 38:451–460

    PubMed  CAS  Google Scholar 

  10. Ikeguchi Y, Bewley M, Pegg AE (2006) Aminopropyltransferases: function, structure and genetics. J Biochem 139:1–9

    PubMed  CAS  Google Scholar 

  11. Wu H, Min J, Ikeguchi Y, Zeng H, Dong A, Loppnau P, Pegg AE, Plotnikov AN (2007) Structure and mechanism of spermidine synthases. Biochemistry 46:8331–8339

    PubMed  CAS  Google Scholar 

  12. Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P, Michael AJ, Pegg AE, Plotnikov AN (2008) Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism.J Biol Chem 283:16135–16146

    PubMed  CAS  Google Scholar 

  13. Pegg AE, Michael AJ (2010) Spermine synthase. Cell Mol Life Sci 67:113–121

    PubMed  CAS  Google Scholar 

  14. Lee J, Sperandio V, Frantz DE, Longgood J, Camilli A, Phillips MA, Michael AJ (2009) An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J Biol Chem 284:9899–9907

    PubMed  CAS  Google Scholar 

  15. Tait GH (1976) A new pathway for the biosynthesis of spermidine. Biochem Soc Trans 4:610–612

    PubMed  CAS  Google Scholar 

  16. Yamamoto S, Nagata S, Kusaba K (1993) Purification and characterization of homospermidine synthase in Acinetobacter tartarogenes ATCC 31105. J Biochem 114:45–49

    PubMed  CAS  Google Scholar 

  17. Ober D, Harms R, Witte L, Hartmann T (2003) Molecular evolution by change of function. alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein. J Biol Chem 278:12805–12812

    PubMed  CAS  Google Scholar 

  18. Shaw FL, Elliott KA, Kinch LN, Fuell C, Phillips MA, Michael AJ (2010) Evolution and multifarious horizontal transfer of an alternative biosynthetic pathway for the alternative polyamine sym-homospermidine.J Biol Chem 285:14711–14723

    PubMed  CAS  Google Scholar 

  19. Oshima T (2007) Unique polyamines produced by an extreme thermophile Thermus thermophilus. Amino Acids 33:367–372

    PubMed  CAS  Google Scholar 

  20. Terui Y, Ohnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile. Biochem J 388:427–433

    PubMed  CAS  Google Scholar 

  21. Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792

    PubMed  CAS  Google Scholar 

  22. Pegg AE (2009) Mammalian polyamine metabolism and function. IUBMB Life 61:880–894

    PubMed  CAS  Google Scholar 

  23. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    PubMed  CAS  Google Scholar 

  24. Yoshida M, Kashiwagi K, Shigemasa A, Taniguchi S, Yamamoto K, Makinoshima H, Ishihama A, Igarashi K (2004) A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J Biol Chem 279:46008–46013

    PubMed  CAS  Google Scholar 

  25. Igarashi K, Kashiwagi K (2006) Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem (Tokyo) 139:11–16

    CAS  Google Scholar 

  26. Uemura T, Higashi K, Takigawa M, Toida T, Kashiwagi K, Igarashi K (2009) Polyamine modulon in yeast-stimulation of COX4 synthesis by spermidine at the level of translation. Int J Biochem Cell Biol 41:2538–2545

    PubMed  CAS  Google Scholar 

  27. Nishimura K, Okudaira H, Ochiai E, Higashi K, Kaneko M, Ishii I, Nishimura T, Dohmae N, Kashiwagi K, Igarashi K (2009) Identification of proteins whose synthesis is preferentially enhanced by polyamines at the level of translation in mammalian cells. Int J Biochem Cell Biol 41:2251–2261

    PubMed  CAS  Google Scholar 

  28. Saini P, Eyler DE, Green R, Dever TE (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459:118–121

    PubMed  CAS  Google Scholar 

  29. Park MH, Nishimura K, Zanelli CF, Valentini SR (2010) Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 41:2538–2545

    Google Scholar 

  30. Landau G, Bercovich Z, Park MH, Kahana C (2010) The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation. J Biol Chem 285:12474–12481

    PubMed  CAS  Google Scholar 

  31. Zou T, Mazan-Mamczarz K, Rao JN, Liu L, Marasa BS, Zhang AH, Xiao L, Pullmann R, Gorospe M, Wang JY (2006) Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs. J Biol Chem 281:19387–19394

    PubMed  CAS  Google Scholar 

  32. Zou T, Liu L, Rao JN, Marasa BS, Chen J, Xiao L, Zhou H, Gorospe M, Wang JY (2008) Polyamines modulate the subcellular localization of RNA-binding protein HuR through AMP-activated protein kinase-regulated phosphorylation and acetylation of importin alpha1. Biochem J 409:389–398

    PubMed  CAS  Google Scholar 

  33. Liu L, Rao JN, Zou T, Xiao L, Wang PY, Turner DJ, Gorospe M, Wang JY (2009) Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. Mol Biol Cell 20:4885–4898

    PubMed  CAS  Google Scholar 

  34. Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    PubMed  CAS  Google Scholar 

  35. Williams K (1997) Modulation and block of ion channels: a new biology of polyamines. Cell Signal 9:1–13

    PubMed  CAS  Google Scholar 

  36. Jänne J, Alhonen L, Pietilä M, Keinänen T (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur J Biochem 271:877–894

    PubMed  Google Scholar 

  37. Pegg AE, Feith DJ, Fong LYY, Coleman CS, O’Brien TG, Shantz LM (2003) Transgenic mouse models for studies of the role of polyamines in normal, hypertrophic and neoplastic growth. Biochem Soc Trans 31:356–360

    PubMed  CAS  Google Scholar 

  38. Alhonen L, Uimari A, Pietila M, Hyvonen MT, Pirinen E, Keinanen TA (2009) Transgenic animals modelling polyamine metabolism-related diseases. Essays Biochem 46:125–144

    PubMed  CAS  Google Scholar 

  39. Nilsson JA, Keller UB, Baudino TA, Yang C, Norton S, Old JA, Nilsson LM, Neale G, Kramer DL, Porter CW, Cleveland JL (2005) Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 7:433–444

    PubMed  CAS  Google Scholar 

  40. Guo Y, Cleveland JL, O’Brien TG (2005) Haploinsufficiency for ODC modifies mouse skin tumor susceptibility. Cancer Res 65:1146–1149

    PubMed  CAS  Google Scholar 

  41. Feith DJ, Fong LYY, Pegg AE (2005) Antizyme inhibits N-nitrosomethylbenzylamine-induced mouse forestomach carcinogenesis in a p53-independent manner. Proc Am Assoc Cancer Res 46:A3887

    Google Scholar 

  42. Rial NS, Meyskens FL, Gerner EW (2009) Polyamines as mediators of APC-dependent intestinal carcinogenesis and cancer chemoprevention. Essays Biochem 46:111–124

    PubMed  CAS  Google Scholar 

  43. Gerner EW, Meyskens FL Jr (2009) Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation. Clin Cancer Res 15:758–761

    PubMed  CAS  Google Scholar 

  44. Bailey HH, Kim K, Verma AK, Sielaff K, Larson PO, Snow S, Lenaghan T, Viner JL, Douglas J, Dreckschmidt NE, Hamielec M, Pomplun M, Sharata HH, Puchalsky D, Berg ER, Havighurst TC, Carbone PP (2010)A randomized, double-blind, placebo-controlled phase 3 skin cancer prevention study of α-difluoromethylornithine in subjects with previous history of skin cancer. Cancer Prev Res 3:35–47

    CAS  Google Scholar 

  45. Simoneau AR, Gerner EW, Nagle R, Ziogas A, Fujikawa-Brooks S, Yerushalmi H, Ahlering TE, Lieberman R, McLaren CE, Anton-Culver H, Meyskens FL Jr (2008) The effect of difluoromethylornithine on decreasing prostate size and polyamines in men: results of a year-long phase IIb randomized placebo-controlled chemoprevention trial. Cancer Epidemiol Biomarkers Prev 17:292–299

    PubMed  CAS  Google Scholar 

  46. Forshell TP, Rimpi S, Nilsson JA (2010) Chemoprevention of B-cell lymphomas by inhibition of the Myc target spermidine synthase. Cancer Prev Res 3:140–147

    Google Scholar 

  47. Pegg AE (2008) Spermidine/spermine N 1-acetyltransferase: a key metabolic regulator. Am J Physiol Endocrinol Metab 294:E995–E1010

    PubMed  CAS  Google Scholar 

  48. Casero RA Jr, Pegg AE (2009) Polyamine catabolism and disease. Biochem J 421:323–338

    PubMed  CAS  Google Scholar 

  49. Jänne J, Alhonen L, Pietila M, Keinanen TA, Uimari A, Hyvonen MT, Pirinen E, Jarvinen A (2006) Genetic manipulation of polyamine catabolism in rodents. J Biochem (Tokyo) 139:155–160

    Google Scholar 

  50. Chattopadhyay MK, Park MH, Tabor H (2008) Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proc Natl Acad Sci USA 105:6554–6559

    PubMed  CAS  Google Scholar 

  51. Pegg AE, Wang X (2009) Mouse models to investigate the function of spermine. Commun Integr Biol 2:271–274

    PubMed  CAS  Google Scholar 

  52. Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthese: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    PubMed  CAS  Google Scholar 

  53. Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ (2002) Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. J Biol Chem 277:44131–44139

    PubMed  CAS  Google Scholar 

  54. Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blazquez MA, Carbonell J (2010) Role of polyamines in plant vascular development. Plant Physiol Biochem 48:534–539

    PubMed  CAS  Google Scholar 

  55. Seiler N, Bolkenius FN, Knodgen B (1985) The influence of catabolic reactions on polyamine excretion. Biochem J 225:219–226

    PubMed  CAS  Google Scholar 

  56. Morgan DM (1998) Polyamine oxidases–enzymes of unknown function? Biochem Soc Trans 26:586–591

    PubMed  CAS  Google Scholar 

  57. Seiler N (2004) Catabolism of polyamines. Amino Acids 26:217–233

    PubMed  CAS  Google Scholar 

  58. Kimes BW, Morris DR (1971) Inhibition of nucleic acid and protein synthesis in Escherichia coli by oxidized polyamines and acrolein. Biochim Biophys Acta 228:235–244

    PubMed  CAS  Google Scholar 

  59. Kimes BW, Morris DR (1971) Preparation and stability of oxidized polyamines. Biochim Biophys Acta 228:223–234

    PubMed  CAS  Google Scholar 

  60. Wang Y, Casero RA Jr (2006) Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both? J Biochem (Tokyo) 139:17–25

    CAS  Google Scholar 

  61. Adachi MS, Juarez PR, Fitzpatrick PF (2010) Mechanistic studies of human spermine oxidase: kinetic mechanism and pH effects. Biochemistry 49:386–392

    PubMed  CAS  Google Scholar 

  62. Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA (2008) Bridging the gap between plant and mammalian polyamine catabolism: a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol 147:1845–1857

    PubMed  CAS  Google Scholar 

  63. Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    PubMed  CAS  Google Scholar 

  64. Rodriguez AA, Maiale SJ, Menendez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60: 4249–4262

    PubMed  CAS  Google Scholar 

  65. Childs AC, Mehta DJ, Gerner EW (2003) Polyamine-dependent gene expression. Cell Mol Life Sci 60:1394–1406

    PubMed  CAS  Google Scholar 

  66. Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem (Tokyo) 139:161–169

    CAS  Google Scholar 

  67. Hyvönen MT, Keinänen TA, Cerrada-Gimenez M, Sinervirta R, Grigorenko N, Khomutov AR, Vepsäläinen J, Alhonen L, Jänne J (2007) Role of hypusinated eukaryotic translation initiation factor 5A in polyamine depletion-induced cytostasis.J Biol Chem 282:34700–34706

    PubMed  Google Scholar 

  68. Hoque M, Hanauske-Abel HM, Palumbo P, Saxena D, D’Alliessi-Gandolfi D, Park MH, Pe’ery T, Mathews MB (2009) Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A. Retrovirology 6:90

    PubMed  Google Scholar 

  69. Vu VV, Emerson JP, Martinho M, Kim YS, Munck E, Park MH, Que L Jr (2009) Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O2 with a nonheme diiron center. Proc Natl Acad Sci USA 106:14814–14819

    PubMed  CAS  Google Scholar 

  70. Pegg AE (1986) Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234:249–262

    PubMed  CAS  Google Scholar 

  71. Persson L (2009) Polyamine homoeostasis. Essays Biochem 46:11–24

    PubMed  CAS  Google Scholar 

  72. Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532

    PubMed  CAS  Google Scholar 

  73. Kahana C (2009) Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor. Essays Biochem 46:47–61

    PubMed  CAS  Google Scholar 

  74. Bale S, Lopez MM, Makhatadze GI, Fang Q, Pegg AE, Ealick SE (2008) Structural basis for putrescine activation of human S-adenosylmethionine decarboxylase. Bio­chemistry 47:13404–13417

    PubMed  CAS  Google Scholar 

  75. Willert EK, Fitzpatrick R, Phillips MA (2007) Allosteric regulation of an essential trypanosome polyamine biosynthetic enzyme by a catalytically dead homolog. Proc Natl Acad Sci USA 104:8275–8280

    PubMed  CAS  Google Scholar 

  76. Willert EK, Phillips MA (2008) Regulated expression of an essential allosteric activator of polyamine biosynthesis in African trypanosomes. PLoS Pathog 4:e1000183

    PubMed  Google Scholar 

  77. Willert EK, Phillips MA (2009) Cross-species activation of trypanosome S-adenosylmethionine decarboxylase by the regulatory subunit prozyme. Mol Biochem Parasitol 168:1–6

    PubMed  CAS  Google Scholar 

  78. Bacchi CJ (2009) Chemotherapy of human African trypanosomiasis. Interdiscip Perspect Infect Dis 2009:195040

    PubMed  Google Scholar 

  79. Barker RH Jr, Liu H, Hirth B, Celatka CA, Fitzpatrick R, Xiang Y, Willert EK, Phillips MA, Kaiser M, Bacchi CJ, Rodriguez A, Yarlett N, Klinger JD, Sybertz E (2009) Novel S-adenosylmethionine decarboxylase inhibitors for the treatment of human African trypanosomiasis. Antimicrob Agents Chemother 53:2052–2058

    PubMed  CAS  Google Scholar 

  80. Russell DH, Snyder SH (1969) Amine synthesis in regenerating rat liver: extremely rapid turnover of ornithine decarboxylase. Mol Pharmacol 5:253–262

    PubMed  CAS  Google Scholar 

  81. Coffino P (2001) Regulation of cellular polyamines by antizyme. Nat Rev Mol Cell Biol 2:188–194

    PubMed  CAS  Google Scholar 

  82. Kahana C (2009) Antizyme and antizyme inhibitor, a regulatory tango. Cell Mol Life Sci 66:2479–2488

    PubMed  CAS  Google Scholar 

  83. Heller JS, Fong WF, Canellakis ES (1976) Induction of a protein inhibitor to ornithine decarboxylase by the end products of its reaction. Proc Natl Acad Sci USA 73:1858–1862

    PubMed  CAS  Google Scholar 

  84. Hayashi S, Murakami Y, Matsufuji S (1996) Ornithine decarboxylase antizyme: a novel type of regulatory protein. TIBS 21:27–30

    PubMed  CAS  Google Scholar 

  85. Yamaguchi Y, Takatsuka Y, Matsufuji S, Murakami Y, Kamio Y (2006) Characterization of a counterpart to mammalian ornithine decarboxylase antizyme in prokaryotes. J Biol Chem 281:3995–4001

    PubMed  CAS  Google Scholar 

  86. Ivanov IP, Matsufuji S, Murakami Y, Gesteland RF, Atkins JF (2000) Conservation of polyamine regulation by translational frameshifting from yeast to mammals. EMBO J 19:1907–1917

    PubMed  CAS  Google Scholar 

  87. Howard MT, Shirts BH, Zhou J, Carlson CL, Matsufuji S, Gesteland RF, Weeks RS, Atkins JF (2001) Cell culture analysis of the regulatory frameshift event required for the expression of mammalian antizymes. Genes Cells 6:931–941

    PubMed  CAS  Google Scholar 

  88. Ivanov IP, Loughran G, Atkins JF (2008) uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs. Proc Natl Acad Sci USA 105:10079–10084

    PubMed  CAS  Google Scholar 

  89. Murai N, Shimizu A, Murakami Y, Matsufuji S (2009) Subcellular localization and phosphorylation of antizyme 2. J Cell Biochem 108:1012–1021

    PubMed  CAS  Google Scholar 

  90. Tokuhiro K, Isotani A, Yokota S, Yano Y, Oshio S, Hirose M, Wada M, Fujita K, Ogawa Y, Okabe M, Nishimune Y, Tanaka H (2009) OAZ-t/OAZ3 is essential for rigid connection of sperm tails to heads in mouse. PLoS Genet 5:e1000712

    PubMed  Google Scholar 

  91. Lopez-Contreras AJ, Ramos-Molina B, Cremades A, Penafiel R (2009) Antizyme inhibitor 2: molecular, cellular and physiological aspects. Amino Acids 38:603–611

    PubMed  Google Scholar 

  92. Su KL, Liao YF, Hung HC, Liu GY (2009) Critical factors determining dimerization of human antizyme inhibitor. J Biol Chem 284:26768–26777

    PubMed  CAS  Google Scholar 

  93. Snapir Z, Keren-Paz A, Bercovich Z, Kahana C (2008) ODCp, a brain- and testis-specific ornithine decarboxylase paralogue, functions as an antizyme inhibitor, although less efficiently than AzI1. Biochem J 410:613–619

    PubMed  CAS  Google Scholar 

  94. Tang H, Ariki K, Ohkido M, Murakami Y, Matsufuji S, Li Z, Yamamura K (2009) Role of ornithine decarboxylase antizyme inhibitor in vivo. Genes Cells 14:79–87

    PubMed  CAS  Google Scholar 

  95. Nilsson JA, Maclean KH, Keller UB, Pendeville H, Baudino TA, Cleveland JL (2004) Mnt loss triggers Myc transcription targets, proliferation, apoptosis, and transformation. Mol Cell Biol 24:1560–1569

    PubMed  CAS  Google Scholar 

  96. Shantz LM, Levin VA (2007) Regulation of ornithine decarboxylase during oncogenic transformation: mechanisms and therapeutic potential. Amino Acids 33:213–223

    PubMed  CAS  Google Scholar 

  97. Pyronnet S, Pradayrol L, Sonenberg N (2005) Alternative splicing facilitates internal ribosome entry on the ornithine decarboxylase mRNA. Cell Mol Life Sci 62:1267–1274

    PubMed  CAS  Google Scholar 

  98. Origanti S, Shantz LM (2007) Ras transformation of RIE-1 cells activates cap-independent translation of ornithine decarboxylase: regulation by the Raf/MEK/ERK and phosphatidylinositol 3-kinase pathways. Cancer Res 67:4834–4842

    PubMed  CAS  Google Scholar 

  99. Grens A, Scheffler IE (1990) The 5′- and 3′-untranslated regions of ornithine decarboxylase mRNA affect the translational efficiency. J Biol Chem 265:11810–11816

    PubMed  CAS  Google Scholar 

  100. Igarashi K, Ito K, Kashiwagi K (2001) Polyamine uptake systems in Escherichi coli. Res Microbiol 152:271–278

    PubMed  CAS  Google Scholar 

  101. Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344:633–642

    PubMed  CAS  Google Scholar 

  102. Aouida M, Leduc A, Poulin R, Ramotar D (2005) AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J Biol Chem 280:24267–24276

    PubMed  CAS  Google Scholar 

  103. Uemura T, Kashiwagi K, Igarashi K (2007) Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J Biol Chem 282:7733–7741

    PubMed  CAS  Google Scholar 

  104. Hasne MP, Ullman B (2005) Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem 280:15188–15194

    PubMed  CAS  Google Scholar 

  105. Hasne MP, Coppens I, Soysa R, Ullman B (2010) A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol Microbiol 76:78–91

    PubMed  CAS  Google Scholar 

  106. Burns MR, Carlson CL, Vanderwerf SM, Ziemer JR, Weeks RS, Cai F, Webb HW, Graminski GF (2001) Amino acid/spermine conjugates: polyamine amides as potent spermidine uptake inhibitors. J Med Chem 44:3632–3644

    PubMed  CAS  Google Scholar 

  107. Covassin L, Desjardins M, Soulet D, Charest-Gaudreault R, Audette M, Poulin R (2003) Xylylated dimers of putrescine and polyamines: influence of the polyamine backbone on spermidine transport inhibition. Bioorg Med Chem Lett 13:3267–3271

    PubMed  CAS  Google Scholar 

  108. Burns MR, Graminski GF, Weeks RS, Chen Y, O’Brien TG (2009) Lipophilic lysine-spermine conjugates are potent polyamine transport Inhibitors for use in combination with a polyamine biosynthesis inhibitor.J Med Chem 52:1983–1993

    PubMed  CAS  Google Scholar 

  109. Heinick A, Urban K, Roth S, Spies D, Nunes F, Phanstiel O IV, Liebau E, Luersen K (2010) Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. FASEB J 24:206–217

    PubMed  Google Scholar 

  110. Rannels DE, Pegg AE, Clark RS, Addison JL (1985) Interaction of paraquat and amine uptake by rat lungs perfused in situ. AmJ Physiol 249:E506–E513

    PubMed  CAS  Google Scholar 

  111. Minton KW, Tabor H, Tabor CW (1990) Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc Natl Acad Sci USA 87:2851–2855

    PubMed  CAS  Google Scholar 

  112. Mandel J, Flintoff WF (1978) Isolation of mutant mammalian cells altered in polyamine transport. J Cell Physiol 97:335–344

    PubMed  CAS  Google Scholar 

  113. Heaton MA, Flintoff WF (1988) Methylglyoxal bis (guanylhydrazone)-­resistant Chinese hamster ovary cells: genetic evidence that more than a single locus controls uptake. J Cell Physiol 136:133–139

    PubMed  CAS  Google Scholar 

  114. Byers TL, Kameji R, Rannels DE, Pegg AE (1987) Multiple pathways for uptake of ­paraquat, methylglyoxal bis(guanylhydrazone), and polyamines. Am J Physiol 252:C663–C669

    PubMed  CAS  Google Scholar 

  115. Rossi T, Coppi A, Bruni E, Ruberto A, Giudice S, Baggio G (2008) Mepacrine antagonises tumour cell growth induced by natural polyamines. Anticancer Res 28:2765–2768

    PubMed  CAS  Google Scholar 

  116. Holley JL, Mather A, Wheelhouse RT, Cullis PM, Hartley JA, Bingham JP, Cohen GM (1992) Targeting of tumor cells and DNA by a chlorambucil-spermidine conjugate. Cancer Res 52:4190–4195

    PubMed  CAS  Google Scholar 

  117. Kaur N, Delcros JG, Archer J, Weagraff NZ, Martin B, Phanstiel O IV (2008) Designing the polyamine pharmacophore: influence of N-substituents on the transport behavior of polyamine conjugates. J Med Chem 51:2551–2560

    PubMed  CAS  Google Scholar 

  118. Palmer AJ, Ghani RA, Kaur N, Phanstiel O, Wallace HM (2009) A putrescine-anthracence conjugate: a paradigm for selective drug delivery. Biochem J 424:431–438

    PubMed  CAS  Google Scholar 

  119. Mitchell JL, Leyser A, Holtorff MS, Bates JS, Frydman B, Valasinas A, Reddy VK, Marton LJ (2002) Antizyme induction by polyamine analogues as a factor of cell growth inhibition. Biochem J 366:663–671

    PubMed  CAS  Google Scholar 

  120. Mitchell JL, Simkus CL, Thane TK, Tokarz P, Bonar MM, Frydman B, Valasinas AL, Reddy VK, Marton LJ (2004) Antizyme induction mediates feedback limitation of the incorporation of specific polyamine analogues in tissue culture. Biochem J 384:271–279

    PubMed  CAS  Google Scholar 

  121. Soulet D, Gagnon B, Rivest S, Audette M, Poulin R (2004) A fluorescent probe of polyamine transport accumulates into intracellular acidic vesicles via a two-step mechanism. J Biol Chem 279:49355–49366

    PubMed  CAS  Google Scholar 

  122. Belting M, Persson S, Fransson L-Å (1999) Proteoglycan involvement in polyamine uptake. Biochem J 338:317–323

    PubMed  CAS  Google Scholar 

  123. Belting M, Mani K, Jonsson M, Cheng F, Sandgren S, Jonsson S, Ding K, Delcros JG, Fransson LA (2003) Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide. J Biol Chem 278:47181–47189

    PubMed  CAS  Google Scholar 

  124. Belting M, Borsig L, Fuster MM, Brown JR, Persson L, Fransson LA, Esko JD (2002) Tumor attenuation by combined heparan sulfate and polyamine depletion. Proc Natl Acad Sci USA 99:371–376

    PubMed  CAS  Google Scholar 

  125. Welch JE, Bengtson P, Svensson K, Wittrup A, Jenniskens GJ, Ten Dam GB, Van Kuppevelt TH, Belting M (2008) Single chain fragment anti-heparan sulfate antibody targets the polyamine transport system and attenuates polyamine-dependent cell proliferation. Int J Oncol 32:749–756

    PubMed  CAS  Google Scholar 

  126. Roy UK, Rial NS, Kachel KL, Gerner EW (2008) Activated K-RAS increases polyamine uptake in human colon cancer cells through modulation of caveolar endocytosis. Mol Carcinog 47:538–553

    PubMed  CAS  Google Scholar 

  127. Hawell L, Tjandrawinata RR, Byus CV (1994) Selective putrescine export is regulated by insulin and ornithine in Reuber H35 hepatoma cells. Biochim Biopyhs Acta 1222:15–26

    Google Scholar 

  128. Hawel L III, Byus CV (2002) A streamlined method for the isolation and quantitation of nanomole levels of exported polyamines in cell culture media. Anal Biochem 311:127–132

    PubMed  CAS  Google Scholar 

  129. Pastorian KE, Byus CV (1997) Tolerance to putrescine toxicity in Chinese hamster ovary cells is associated with altered uptake and export. Exp Cell Res 231:284–295

    PubMed  CAS  Google Scholar 

  130. Uemura T, Yerushalmi HF, Tsaprailis G, Stringer DE, Pastorian KE, Hawel L III, Byus CV, Gerner EW (2008) Identification and characterization of a diamine exporter in colon epithelial cells. J Biol Chem 283:26428–26435

    PubMed  CAS  Google Scholar 

  131. Bardocz S, Duguid TJ, Brown DS, Grant G, Pusztai A, White A, Ralph A (1995) The importance of dietary polyamines in cell regeneration and growth. Br J Nutr 73:819–828

    PubMed  CAS  Google Scholar 

  132. Quemener V, Moulinoux JP, Havouis R, Seiler N (1992) Polyamine deprivation enhances antitumoral efficacy of chemotherapy. Anticancer Res 12:1447–1454

    PubMed  CAS  Google Scholar 

  133. Quemener V, Blancard Y, Chamaillard L, Havouis R, Cipolla B, Moulinoux J (1994) Polyamine deprivation: a new tool in cancer treatment. Anticancer Res 14:443–448

    PubMed  CAS  Google Scholar 

  134. Cipolla B, Guilli F, Moulinoux JP (2003) Polyamine-reduced diet in metastatic ­hormone-refractory prostate cancer (HRPC) patients. Biochem Soc Trans 31:384–387

    PubMed  CAS  Google Scholar 

  135. Estebe JP, Legay F, Gentili M, Wodey E, Leduc C, Ecoffey C, Moulinoux JP (2006) An evaluation of a polyamine-deficient diet for the treatment of inflammatory pain. Anesth Analg 102:1781–1788

    PubMed  CAS  Google Scholar 

  136. Soda K, Kano Y, Sakuragi M, Takao K, Lefor A, Konishi F (2009) Long-term oral polyamine intake increases blood polyamine concentrations. J Nutr Sci Vitaminol (Tokyo) 55:361–366

    CAS  Google Scholar 

  137. Sabater-Molina M, Larque E, Torrella F, Plaza J, Lozano T, Munoz A, Zamora S (2009) Effects of dietary polyamines at physiologic doses in early-weaned piglets. Nutrition 25:940–946

    PubMed  CAS  Google Scholar 

  138. Zoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW, Meyskens FL Jr (2007) Development of a polyamine database for assessing dietary intake. J Am Diet Assoc 107:1024–1027

    PubMed  CAS  Google Scholar 

  139. Kawakita M, Hiramatsu K (2006) Diacetylated derivatives of spermine and spermidine as novel promising tumor markers. J Biochem (Tokyo) 139:315–322

    CAS  Google Scholar 

  140. Russell DH (1977) Clinical relevance of polyamines as biochemical markers of tumor kinetics. Clin Chem 23:22–27

    PubMed  CAS  Google Scholar 

  141. Durie BG, Salmon SE, Russell DH (1977) Polyamines as markers of response and disease activity in cancer chemotherapy. Cancer Res 37:214–221

    PubMed  CAS  Google Scholar 

  142. Miki T, Hiramatsu K, Kawakita M (2005) Interaction of N1, N12-diacetylspermine with polyamine transport systems of polarized porcine renal cell line LLC-PK1.J Biochem (Tokyo) 138:479–484

    CAS  Google Scholar 

  143. Hamaoki M, Hiramatsu K, Suzuki S, Nagata A, Kawakita M (2002) Two enzyme-linked immunosorbent assay (ELISA) systems for N1, N8-diacetylspermidine and N1, N12-diacetylspermine using monoclonal antibodies. J Biochem 132:783–788

    PubMed  CAS  Google Scholar 

  144. Parchment RE (1993) The implications of a unified theory of programmed cell death, polyamines, oxyradicals and histogenesis in the embryo. Int J Dev Biol 37:75–83

    PubMed  CAS  Google Scholar 

  145. Parchment RE, Pierce GB (1989) Polyamine oxidation programmed cell death, and regulation of melanoma in the murine embryonic limb. Cancer Res 49:6680–6686

    PubMed  CAS  Google Scholar 

  146. Zahedi K, Wang Z, Barone S, Prada AE, Kelly CN, Casero RA, Yokota N, Porter CW, Rabb H, Soleimani M (2003) Expression of SSAT, a novel biomarker of tubular cell damage, increases in kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 284:F1046–F1055

    PubMed  CAS  Google Scholar 

  147. Zhao YJ, Xu CQ, Zhang WH, Zhang L, Bian SL, Huang Q, Sun HL, Li QF, Zhang YQ, Tian Y, Wang R, Yang BF, Li WM (2007) Role of polyamines in myocardial ischemia/reperfusion injury and their interactions with nitric oxide. Eur J Pharmacol 562:236–246

    PubMed  CAS  Google Scholar 

  148. Zahedi K, Bissler JJ, Wang Z, Josyula A, Lu L, Diegelman P, Kisiel N, Porter CW, Soleimani M (2007) Spermidine/spermine N   1-acetyltransferase overexpression in kidney epithelial cells disrupts polyamine homeostasis, leads to DNA damage, and causes G2 arrest. Am J Physiol Cell Physiol 292:C1204–C1215

    PubMed  CAS  Google Scholar 

  149. Barone S, Okaya T, Rudich S, Petrovic S, Tenrani K, Wang Z, Zahedi K, Casero RA, Lentsch AB, Soleimani M (2005) Distinct and sequential upregulation of genes regulating cell growth and cell cycle progression during hepatic ischemia-reperfusion injury. AmJ Physiol Cell Physiol 289:C826–C835

    PubMed  CAS  Google Scholar 

  150. Zahedi K, Lentsch AB, Okaya T, Barone SL, Sakai N, Witte DP, Arend LJ, Alhonen L, Jell J, Jänne J, Porter CW, Soleimani M (2009) Spermidine/spermine-N  1-acetyltransferase ablation protects against liver and kidney ischemia reperfusion injury in mice. AmJ Physiol Gastrointest Liver Physiol 296:G899–G909

    PubMed  CAS  Google Scholar 

  151. Sakata K, Kashiwagi K, Sharmin S, Ueda S, Igarashi K (2003) Acrolein produced from polyamines as one of the uraemic toxins. Biochem Soc Trans 31:371–374

    PubMed  CAS  Google Scholar 

  152. Igarashi K, Ueda S, Yoshida K, Kashiwagi K (2006) Polyamines in renal failure. Amino Acids 31:477–483

    PubMed  CAS  Google Scholar 

  153. Tomitori H, Usui T, Saeki N, Ueda S, Kase H, Nishimura K, Kashiwagi K, Igarashi K (2005) Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke 36:2609–2613

    PubMed  CAS  Google Scholar 

  154. Yoshida M, Higashi K, Jin L, Machi Y, Suzuki T, Masuda A, Dohmae N, Suganami A, Tamura Y, Nishimura K, Toida T, Tomitori H, Kashiwagi K, Igarashi K (2010) Identification of acrolein-conjugated protein in plasma of patients with brain infarction. Biochem Biophys Res Commun 391:1234–1239

    PubMed  CAS  Google Scholar 

  155. Saiki R, Nishimura K, Ishii I, Omura T, Okuyama S, Kashiwagi K, Igarashi K (2009) Intense correlation between brain infarction and protein-conjugated acrolein. Stroke 40:3356–3361

    PubMed  CAS  Google Scholar 

  156. Yoshida M, Tomitori H, Machi Y, Hagihara M, Higashi K, Goda H, Ohya T, Niitsu M, Kashiwagi K, Igarashi K (2009) Acrolein toxicity: comparison with reactive oxygen species. Biochem Biophys Res Commun 378:313–318

    PubMed  CAS  Google Scholar 

  157. Yoshida M, Tomitori H, Machi Y, Katagiri D, Ueda S, Horiguchi K, Kobayashi E, Saeki N, Nishimura K, Ishii I, Kashiwagi K, Igarashi K (2009) Acrolein, IL-6 and CRP as markers of silent brain infarction. Atherosclerosis 203:557–562

    PubMed  CAS  Google Scholar 

  158. Seiler N (1990) Polyamine metabolism. Digestion 46:319–330

    PubMed  CAS  Google Scholar 

  159. Hong SK, Chaturvedi R, Piazuelo MB, Coburn LA, Williams CS, Delgado AG, Casero RA Jr, Schwartz DA, Wilson KT (2010) Increased expression and cellular localization of spermine oxidase in ulcerative colitis and relationship to disease activity. Inflamm Bowel Dis 16:1557–1566

    PubMed  Google Scholar 

  160. Gobert AP, Cheng Y, Wang JY, Boucher JL, Iyer RK, Cederbaum SD, Casero RA Jr, Newton JC, Wilson KT (2002) Heliobacter pylori induces macrophage apoptosis by activation of arginase II. J Immunol 168:4692–4700

    PubMed  CAS  Google Scholar 

  161. Cheng Y, Chaturvedi R, Asim M, Bussiere FI, Scholz A, Xu H, Casero RA Jr, Wilson KT (2005) Helicobacter pylori-induced macrophage apoptosis requires activation of ornithine decarboxylase by c-Myc. J Biol Chem 280:22492–22496

    PubMed  CAS  Google Scholar 

  162. Chaturvedi R, Cheng Y, Asim M, Bussiere FI, Xu H, Gobert AP, Hacker A, Casero RA Jr, Wilson KT (2004) Induction of polyamine oxidase 1 by Helicobacter pylori causes macrophage apoptosis by hydrogen peroxide release and mitochondrial membrane depolarization. J Biol Chem 279:40161–40173

    PubMed  CAS  Google Scholar 

  163. Xu H, Chaturvedi R, Cheng Y, Bussiere FI, Asim M, Yao MD, Potosky D, Meltzer SJ, Rhee JG, Kim SS, Moss SF, Hacker A, Wang Y, Casero RA Jr, Wilson KT (2004) Spermine oxidation induced by Helicobacter pylori results in apoptosis and DNA damage: implications for gastric carcinogenesis. Cancer Res 64:8521–8525

    PubMed  CAS  Google Scholar 

  164. Kee K, Foster BA, Merali S, Kramer DL, Hensen ML, Diegelman P, Kisiel N, Vujcic S, Mazurchuk RV, Porter CW (2004) Activated polyamine catabolism depletes acetyl-CoA pools and suppresses prostate tumor growth in TRAMP mice. J Biol Chem 279:40076–40083

    PubMed  CAS  Google Scholar 

  165. Tucker JM, Murphy JT, Kisiel N, Diegelman P, Barbour KW, Davis C, Medda M, Alhonen L, Janne J, Kramer DL, Porter CW, Berger FG (2005) Potent modulation of intestinal tumorigenesis in Apc min/+ mice by the polyamine catabolic enzyme spermidine/spermine N   1-acetyltransferase. Cancer Res 65:5390–5398

    PubMed  CAS  Google Scholar 

  166. Hyvonen MT, Merentie M, Uimari A, Keinanen TA, Janne J, Alhonen L (2007) Mechanisms of polyamine catabolism-induced acute pancreatitis. Biochem Soc Trans 35:326–330

    PubMed  CAS  Google Scholar 

  167. Jell J, Merali S, Hensen ML, Mazurchuk R, Spernyak JA, Diegelman P, Kisiel ND, Barrero C, Deeb KK, Alhonen L, Patel MS, Porter CW (2007) Genetically altered expression of spermidine/spermine N  1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol Chem 282:8404–8413

    PubMed  CAS  Google Scholar 

  168. Merentie M, Uimari A, Pietila M, Sinervirta R, Keinanen TA, Vepsalainen J, Khomutov A, Grigorenko N, Herzig KH, Janne J, Alhonen L (2007) Oxidative stress and inflammation in the pathogenesis of activated polyamine catabolism-induced acute pancreatitis. Amino Acids 33:323–330

    PubMed  CAS  Google Scholar 

  169. Gimelli G, Giglio S, Zuffardi O, Alhonen L, Suppola S, Cusano R, Lo Nigro C, Gatti R, Ravazzolo R, Seri M (2002) Gene dosage of the spermidine/spermine N   1-acetyltransferase (SSAT) gene with putrescine accumulation in a patient with a Xp21.1p22.12 duplication and keratosis follicularis spinulosa decalvans (KFSD). Hum Genet 111:235–241

    PubMed  CAS  Google Scholar 

  170. Pietila M, Pirinen E, Keskitalo S, Juutinen S, Pasonen-Seppanen S, Keinanen T, Alhonen L, Jänne J (2005) Disturbed keratinocyte differentiation in transgenic mice and organotypic keratinocyte cultures as a result of spermidine/spermine N   1-acetyltransferase overexpression. J Invest Dermatol 124:596–601

    PubMed  Google Scholar 

  171. Kaufmann AM, Krise JP (2008) Niemann-Pick C1 functions in regulating lysosomal amine content. J Biol Chem 283:24584–24593

    PubMed  CAS  Google Scholar 

  172. Sequeira A, Gwadry FG, Ffrench-Mullen JM, Canetti L, Gingras Y, Casero RA Jr, Rouleau G, Benkelfat C, Turecki G (2006) Implication of SSAT by gene expression and genetic variation in suicide and major depression. Arch Gen Psychiatry 63:35–48

    PubMed  CAS  Google Scholar 

  173. Guipponi M, Deutsch S, Kohler K, Perroud N, Le Gal F, Vessaz M, Laforge T, Petit B, Jollant F, Guillaume S, Baud P, Courtet P, La Harpe R, Malafosse A (2009) Genetic and epigenetic analysis of SSAT gene dysregulation in suicidal behavior. Am J Med Genet B 50B:799–807

    Google Scholar 

  174. Klempan TA, Rujescu D, Merette C, Himmelman C, Sequeira A, Canetti L, Fiori LM, Schneider B, Bureau A, Turecki G (2009) Profiling brain expression of the spermidine/spermine N   1-acetyltransferase 1 (SAT1) gene in suicide. Am J Med Genet B Neuropsychiatr Genet 150B:934–943

    PubMed  CAS  Google Scholar 

  175. Chen GG, Fiori LM, Moquin L, Gratton A, Mamer O, Mechawar N, Turecki G (2010) Evidence of altered polyamine concentrations in cerebral cortex of suicide completers. Neuropsychopharmacology 35:1477–1484

    PubMed  CAS  Google Scholar 

  176. Ingi T, Worley PF, Lanahan AA (2001) Regulation of SSAT expression by synaptic activity. Eur J Neurosci 13:1459–1463

    PubMed  CAS  Google Scholar 

  177. Kaasinen SK, Grohn OH, Keinanen TA, Alhonen L, Jänne J (2003) Overexpression of spermidine/spermine N  1-acetyltransferase elevates the threshold to pentylenetetrazol-induced seizure activity in transgenic mice. Exp Neurol 183:645–652

    PubMed  CAS  Google Scholar 

  178. Kaasinen SK, Oksman M, Alhonen L, Tanila H, Jänne J (2004) Spermidine/spermine N   1-acetyltransferase overexpression in mice induces hypoactivity and spatial learning impairment. Pharmacol Biochem Behav 78:35–45

    PubMed  CAS  Google Scholar 

  179. Cason AL, Ikeguchi Y, Skinner C, Wood TC, Lubs HA, Martinez F, Simensen RJ, Stevenson RE, Pegg AE, Schwartz CE (2003) X-Linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. Eur J Human Genet 11:937–944

    CAS  Google Scholar 

  180. de Alencastro G, McCloskey DE, Kliemann SE, Maranduba CM, Pegg AE, Wang X, Bertola DR, Schwartz CE, Passos-Bueno MR, Sertie AL (2008) New SMS mutation leads to a striking reduction in spermine synthase protein function and a severe form of Snyder-Robinson X-linked recessive mental retardation syndrome. J Med Genet 45:539–543

    PubMed  Google Scholar 

  181. Becerra-Solano LE, Butler J, Castañeda-Cisneros G, McCloskey DE, Wang X, Pegg AE, Schwartz CE, Sánchez-Corona J, Garcia-Ortiz JE (2009) A missense mutation, p.V132G, in the X-linked spermine synthase gene (SMS) causes Snyder-Robinson syndrome. Am J Med Genet A 149A:328–335

    PubMed  CAS  Google Scholar 

  182. Lakanen JR, Coward JK, Pegg AE (1992) α-Methylpolyamines: metabolically stable spermidine and spermine mimics capable of supporting growth in cells depleted of polyamines. J Med Chem 35:724–734

    PubMed  CAS  Google Scholar 

  183. Varnado BL, Voci CJ, Meyer LM, Coward JK (2000) Circular dichroism and NMR studies of metabolically stable α-methylpolyamines: special comparison with naturally occurring polyamines. Bioorg Chem 28:395–408

    PubMed  CAS  Google Scholar 

  184. Pegg AE, Poulin R, Coward JK (1995) Use of aminopropyltransferase inhibitors and of non-metabolizable analogues to study polyamine regulation and function. Int J Biochem 27:425–442

    CAS  Google Scholar 

  185. Nagarajan S, Ganem B (1987) Chemistry of naturally occurring polyamines. II. Unsaturated spermidine and spermine derivatives. J Org Chem 52:5044–5046

    CAS  Google Scholar 

  186. Nagarajan S, Ganem B, Pegg AE (1988) Studies of non-metabolizable polyamines that support growth of SV-3T3 cells depleted of natural polyamines by exposure to α-difluoromethylornithine. Biochem J 254:373–378

    PubMed  CAS  Google Scholar 

  187. Yang J, Xiao L, Berkey KA, Tamez PA, Coward JK, Casero RA Jr (1995) Significant induction of spermidine/spermine N1-acetyltransferase without cytotoxicity by the growth-supporting polyamine analogue 1, 12-dimethylspermine. J Cell Physiol 165:71–76

    PubMed  CAS  Google Scholar 

  188. Byers TL, Lakanen JR, Coward JK, Pegg AE (1994) The role of hypusine depletion in cytostasis induced by S-adenosyl-L-methionine decarboxylase inhibition: new evidence provided by 1-methylspermidine and 1, 12-dimethylspermine. Biochem J 303:363–368

    PubMed  CAS  Google Scholar 

  189. Byers TL, Wechter R, Hu R, Pegg AE (1994) Effects of the S-adenosylmethionine decarboxylase inhibitor, 5′-{[(Z)-4-amino-2-butenyl] methylamino}-5′-deoxyadenosine, on cell growth and polyamine polyamine metabolism and transport in Chinese hamster ovary cell cultures. Biochem J 303:89–96

    PubMed  CAS  Google Scholar 

  190. Byers TL, Ganem B, Pegg AE (1992) Cytostasis induced in L1210 murine leukemia cells by the S-adenosyl-L-methionine decarboxylase inhibitor 5′-{[(Z)-4-amino-2-butenyl]methylamino}-5′-deoxyadenosine may be due to the hypusine depletion. Biochem J 287:717–724

    PubMed  CAS  Google Scholar 

  191. Jarvinen A, Grigorenko N, Khomutov AR, Hyvonen MT, Uimari A, Vepsalainen J, Sinervirta R, Keinanen TA, Vujcic S, Alhonen L, Porter CW, Janne J (2005) Metabolic stability of α-methylated polyamine derivatives and their use as substitutes for the natural polyamines. J Biol Chem 280:6595–6601

    PubMed  Google Scholar 

  192. Jarvinen AJ, Cerrada-Gimenez M, Grigorenko NA, Khomutov AR, Vepsalainen JJ, Sinervirta RM, Keinanen TA, Alhonen LI, Janne JE (2006) α-methyl polyamines: efficient synthesis and tolerance studies in vivo and in vitro. First evidence for dormant stereospecificity of polyamine oxidase.J Med Chem 49:399–406

    PubMed  Google Scholar 

  193. Hyvonen MT, Herzig KH, Sinervirta R, Albrecht E, Nordback I, Sand J, Keinanen TA, Vepsalainen J, Grigorenko N, Khomutov AR, Kruger B, Janne J, Alhonen L (2006) activated polyamine catabolism in acute pancreatitis: α-methylated polyamine analogues prevent trypsinogen activation and pancreatitis-associated mortality. Am J Pathol 168:115–122

    PubMed  CAS  Google Scholar 

  194. Jarvinen A, Keinanen TA, Grigorenko NA, Khomutov AR, Uimari A, Vepsalainen J, Narvanen A, Alhonen L, Janne J (2006) Guide molecule-driven stereospecific degradation of α-methylpolyamines by polyamine oxidase. J Biol Chem 281:4589–4595

    PubMed  Google Scholar 

  195. Jin HT, Lamsa T, Hyvonen MT, Sand J, Raty S, Grigorenko N, Khomutov AR, Herzig KH, Alhonen L, Nordback I (2008) A polyamine analog bismethylspermine ameliorates severe pancreatitis induced by intraductal infusion of taurodeoxycholate. Surgery 144:49–56

    PubMed  Google Scholar 

  196. Weisell J, Hyvonen MT, Vepsalainen J, Alhonen L, Keinanen TA, Khomutov AR, Soininen P (2010) Novel isosteric charge-deficient spermine analogue-1, 12-diamino-3, 6, 9-triazadodecane: synthesis, pKa measurement and biological activity. Amino Acids 38:501–507

    PubMed  CAS  Google Scholar 

  197. Nayvelt I, Hyvonen MT, Alhonen L, Pandya I, Thomas T, Khomutov AR, Vepsalainen J, Patel R, Keinanen TA, Thomas TJ (2010) DNA condensation by chiral alpha-methylated polyamine analogues and protection of cellular DNA from oxidative damage. Biomacromolecules 11:97–105

    PubMed  CAS  Google Scholar 

  198. Fashe TM, Keinanen TA, Grigorenko NA, Khomutov AR, Janne J, Alhonen L, Pietila M (2010) Cutaneous application of alpha-methylspermidine activates the growth of resting hair follicles in mice. Amino Acids 38:583–590

    PubMed  CAS  Google Scholar 

  199. Vuohelainen S, Pirinen E, Cerrada-Gimenez M, Keinanen TA, Uimari A, Pietila M, Khomutov AR, Janne J, Alhonen L (2010) Spermidine is indispensable in differentiation of 3T3-L1 fibroblasts to adipocytes. J Cell Mol Med 14:1683–1692

    PubMed  CAS  Google Scholar 

  200. Räsänen T-L, Alhonen L, Sinervirta R, Keinänen T, Herzig K-H, Suppola S, Khomutov AR, Vepsäläinen J, Jänne J (2002) A polyamine analogue prevents acute pancreatitis and restores early liver regeneration in transgenic rats with activated polyamine catabolism. J Biol Chem 277:39867–39872

    PubMed  Google Scholar 

  201. Hyvonen MT, Sinervirta R, Grigorenko N, Khomutov AR, Vepsalainen J, Keinanen TA, Alhonen L (2010) alpha-Methylspermidine protects against carbon tetrachloride-induced hepatic and pancreatic damage. Amino Acids 38:575–581

    PubMed  Google Scholar 

  202. Pegg AE, Nagarajan S, Naficy S, Ganem B (1991) Role of unsaturated derivatives of spermidine as substrates for spermine synthase and in supporting growth of SV-3T3 cells. Biochem J 274:167–171

    PubMed  CAS  Google Scholar 

  203. Holley J, Mather A, Cullis P, Symons MR, Wardman P, Watt RA, Cohen GM (1992) Uptake and cytotoxicity of novel nitroimidazole-polyamine conjugates in Ehrlich ascites tumour cells. Biochem Pharmacol 43:763–769

    PubMed  CAS  Google Scholar 

  204. Cullis PM, Green RE, Merson-Davies L, Travis N (1999) Probing the mechanism of transport and compartmentalisation of polyamines in mammalian cells. Chem Biol 6:717–729

    PubMed  CAS  Google Scholar 

  205. Wang C, Delcros JG, Biggerstaff J, Phanstiel O IV (2003) Molecular requirements fortargeting the polyamine transport system. Synthesis and biological evaluation of polyamine-anthracene conjugates. J Med Chem 46:2672–2682

    PubMed  CAS  Google Scholar 

  206. Soulet D, Covassin L, Kaouass M, Charest-Gaudreault R, Audette M, Poulin R (2002) Role of endocytosis in the internalization of spermidine-C(2)-BODIPY, a highly fluorescent probe of polyamine transport. Biochem J 367:347–357

    PubMed  CAS  Google Scholar 

  207. Wang C, Delcros JG, Biggerstaff J, Phanstiel OT (2003) Synthesis and biological evaluation of N1-(anthracen-9-ylmethyl)triamines as molecular recognition elements for the polyamine transporter. J Med Chem 46:2663–2671

    PubMed  CAS  Google Scholar 

  208. Gardner RA, Delcros JG, Konate F, Breitbeil F III, Martin B, Sigman M, Huang M, Phanstiel O IV (2004) N1-substituent effects in the selective delivery of polyamine conjugates into cells containing active polyamine transporters. J Med Chem 47:6055–6069

    PubMed  CAS  Google Scholar 

  209. Kaur N, Delcros JG, Imran J, Khaled A, Chehtane M, Tschammer N, Martin B, Phanstiel O IV (2008) A comparison of chloroambucil- and xylene-containing polyamines leads to improved ligands for accessing the polyamine transport system. J Med Chem 51:1393–1401

    PubMed  CAS  Google Scholar 

  210. Porter CW, McManis J, Casero RA Jr, Bergeron RJ (1987) Relative abilities of bis(ethyl) derivatives of putrescine spermidine and spermine to regulate polyamine biosynthesis and inhibit cell growth. Cancer Res 47:2821–2825

    PubMed  CAS  Google Scholar 

  211. Bergeron RJ, Neims AH, McManis JS, Hawthorne TR, Vinson JRT, Bortell R, Ingeno MJ (1988) Synthetic polyamine analogues as antineoplastics. J Med Chem 31:1183–1190

    PubMed  CAS  Google Scholar 

  212. Bergeron RJ, McManis JS, Liu CZ, Feng Y, Weimar WR, Luchetta GR, Wu Q, Ortiz-Ocasio J, Vinson JRT, Kramer D, Porter C (1994) Antiproliferative properties of polyamine anlogues: a structure-activity study. J Med Chem 37:3464–3476

    PubMed  CAS  Google Scholar 

  213. Casero RA Jr, Frydman B, Stewart TM, Woster PM (2005) Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues. Proc West Pharmacol Soc 48:24–30

    PubMed  CAS  Google Scholar 

  214. Casero RA Jr, Marton LJ (2007) Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390

    PubMed  CAS  Google Scholar 

  215. Casero RA Jr, Woster PM (2009) Recent advances in the development of polyamine analogues as antitumor agents. J Med Chem 52:4551–4573

    PubMed  CAS  Google Scholar 

  216. Senanayake MD, Amunugama H, Boncher TD, Casero RA, Woster PM (2009) Design of polyamine-based therapeutic agents: new ­targets and new directions. Essays Biochem 46:77–94

    PubMed  CAS  Google Scholar 

  217. Basu HS, Feuerstein BG, Deen DF, Lubich WP, Bergeron RJ, Samejima K, Marton LJ (1989) Correlation between the effects of polyamine analogues on DNA conformation and cell growth. Cancer Res 49:5591–5597

    PubMed  CAS  Google Scholar 

  218. Chang BK, Bergeron RJ, Porter CW, Vinson JRT, Liang V (1992) Regulatory and antiproliferative effects of N-alkylated polyamine analogues in human and hamster pancreatic adenocarcinoma cell lines. Cancer Chemother Pharmacol 30:183–188

    PubMed  CAS  Google Scholar 

  219. Saab NH, West EE, Bieszk NC, Preuss CV, Mank AR, Casero RA Jr, Woster PM (1993) Synthesis and evaluation of unsymmetrically substituted polyamine analogues as modulators of human spermidine/spermine-N   1-acetyltransferase (SSAT) and as potential antitumor agents. J Med Chem 36:2998–3004

    PubMed  CAS  Google Scholar 

  220. Reddy VK, Valasinas A, Sarkar A, Basu HS, Marton LJ, Frydman B (1998) Conformationally restricted analogues of lN, 12N-bisethylspermine: synthesis and growth inhibitory effects on human tumor cell lines. J Med Chem 41:4723–4732

    PubMed  CAS  Google Scholar 

  221. Casero RA Jr, Woster PM (2001) Terminally alkylated polyamine analogues as chemotherapeutic agents. J Med Chem 44:1–26

    PubMed  CAS  Google Scholar 

  222. Valasinas A, Reddy VK, Blokhin AV, Basu HS, Bhattacharya S, Sarkar A, Marton LJ, Frydman B (2003) Long-chain polyamines (oligoamines) exhibit strong cytotoxicities against human prostate cancer cells. Bioorg Med Chem 11:4121–4131

    PubMed  CAS  Google Scholar 

  223. Frydman B, Blokhin AV, Brummel S, Wilding G, Maxuitenko Y, Sarkar A, Bhattacharya S, Church D, Reddy VK, Kink JA, Marton LJ, Valasinas A, Basu HS (2003) Cyclopropane-containing polyamine analogues are efficient growth inhibitors of a human prostate tumor xenograft in nude mice. J Med Chem 46:4586–4600

    PubMed  CAS  Google Scholar 

  224. Carew JS, Nawrocki ST, Reddy VK, Bush D, Rehg JE, Goodwin A, Houghton JA, Casero RA Jr, Marton LJ, Cleveland JL (2008) The novel polyamine analogue CGC-11093 enhances the antimyeloma activity of bortezomib. Cancer Res 68:4783–4790

    PubMed  CAS  Google Scholar 

  225. Frydman B, Porter CW, Maxuitenko Y, Sarkar A, Bhattacharya S, Valasinas A, Reddy VK, Kisiel N, Marton LJ, Basu HS (2003)A novel polyamine analog (SL-11093) inhibits growth of human prostate tumor xenografts in nude mice. Cancer Chemother Pharmacol 51:488–492

    PubMed  CAS  Google Scholar 

  226. Casero RA Jr, Celano P, Ervin SJ, Porter CW, Bergeron RJ, Libby P (1989) Differential induction of spermidine/spermine N 1-acetyltransferase in human lung cancer cells by the bis(ethyl)polyamine analogues. Cancer Res 49:3829–3833

    PubMed  CAS  Google Scholar 

  227. McCloskey DE, Pegg AE (2003) Properties of the spermidine/spermine N   1-acetyltransferase mutant L156F that decreases cellular sensitivity to the polyamine analogue N   1, N  11-bis(ethyl)norspermine. J Biol Chem 278:13881–13887

    PubMed  CAS  Google Scholar 

  228. McCloskey DE, Pegg AE (2000) Altered spermidine/spermine N   1-acetyltransferase activity as a mechanism of cellular resistance to bis(ethyl)polyamine analogues. J Biol Chem 275:28708–28714

    PubMed  CAS  Google Scholar 

  229. Pledgie A, Huang Y, Hacker A, Zhang Z, Woster PM, Davidson NE, Casero RA Jr (2005) Spermine oxidase SMO(PAOh1), not N   1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. J Biol Chem 280:39843–39851

    PubMed  CAS  Google Scholar 

  230. Jiang R, Choi W, Hu L, Gerner EW, Hamilton SR, Zhang W (2007) Activation of polyamine catabolism by N  1, N  11-diethylnorspermine alters the cellular localization of mTOR and downregulates mTOR protein level in glioblastoma cells. Cancer Biol Ther 6:1644–1648

    PubMed  CAS  Google Scholar 

  231. Beckers A, Organe S, Timmermans L, Scheys K, Peeters A, Brusselmans K, Verhoeven G, Swinnen JV (2007) Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res 67:8180–8187

    PubMed  CAS  Google Scholar 

  232. Celik A, Kano Y, Tsujinaka S, Okada S, Takao K, Takagi M, Chohnan S, Soda K, Kawakami M, Konishi F (2009) Decrease in malonyl-CoA and its background metabolic alterations in murine model of cancer cachexia. Oncol Rep 21:1105–1111

    PubMed  CAS  Google Scholar 

  233. Boncher T, Bi X, Varghese S, Casero RA Jr, Woster PM (2007) Polyamine-based analogues as biochemical probes and potential therapeutics. Biochem Soc Trans 35:356–363

    PubMed  CAS  Google Scholar 

  234. Huang Y, Pledgie A, Casero RA Jr, Davidson NE (2005) Molecular mechanisms of polyamine analogs in cancer cells. Anticancer Drugs 16:229–241

    PubMed  CAS  Google Scholar 

  235. Wallace HM, Niiranen K (2007) Polyamine analogues – an update. Amino Acids 33:261–265

    PubMed  CAS  Google Scholar 

  236. Hacker A, Marton LJ, Sobolewski M, Casero RA Jr (2008) In vitro and in vivo effects of the conformationally restricted polyamine analogue CGC-11047 on small cell and non-small cell lung cancer cells. Cancer Chemother Pharmacol 63:45–53

    PubMed  CAS  Google Scholar 

  237. Hakkinen MR, Hyvonen MT, Auriola S, Casero RA Jr, Vepsalainen J, Khomutov AR, Alhonen L, Keinanen TA (2010) Metabolism of N-alkylated spermine analogues by polyamine and spermine oxidases. Amino Acids 38:369–381

    PubMed  Google Scholar 

  238. Huang Y, Greene E, Murray Stewart T, Goodwin AC, Baylin SB, Woster PM, Casero RA Jr (2007) Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc Natl Acad Sci USA 104:8023–8028

    PubMed  CAS  Google Scholar 

  239. Bitonti AJ, Dumont JA, Bush TL, Edwards ML, Stemerick DM, McCann PP, Sjoerdsma A (1989) Bis(benzyl)polyamine analogs inhibit the growth of chloroquine-resistant human malaria parasites (Plasmodium falciparum) in vitro and in combination with α-difluoromethylornithine cure murine malaria. Proc Natl Acad Sci USA 86:651–655

    PubMed  CAS  Google Scholar 

  240. Edwards ML, Stemerick DM, Bitonti AJ, Dumont JA, McCann PP, Bey P, Sjoerdsma A (1991) Antimalarial polyamine analogues. J Med Chem 34:569–574

    PubMed  CAS  Google Scholar 

  241. Zou Y, Sirisoma N, Woster PM, Casero RA Jr, Weiss LM, Rattendi D, Lane S, Bacchi CJ (2001) Novel alkylpolyamine analogues that possess both antitrypanosomal and antimicrosporidial activity. Bioorg Med Chem Lett 11:1613–1617

    PubMed  CAS  Google Scholar 

  242. Woster PM (2001) New therapies for parasitic Infection. Annu Rep Med Chem 36:99–108

    CAS  Google Scholar 

  243. Huang Y, Marton LJ, Woster PM, Casero RA (2009) Polyamine analogues targeting epigenetic gene regulation. Essays Biochem 46:95–110

    PubMed  CAS  Google Scholar 

  244. Seiler N, Sarhan S, Knödgen B, Gerhart F (1988) Chain-fluorinated polyamines as tumor markers. II. Metabolic aspects in normal tissues. J Cancer Res Clin Oncol 114:71–80

    PubMed  CAS  Google Scholar 

  245. Hull WE, Kunz W, Port RE, Seiler N (1988) Chain-fluorinated polyamines as tumor markers-III. Determination of geminal difluoropolyamines and their precursor 2, 2-difluoroputrescine in normal tissues and experimental tumors by in vitro and in vivo 19F NMR spectroscopy. NMR Biomed 1:11–19

    PubMed  CAS  Google Scholar 

  246. Dezeure F, Sarhan S, Seiler N (1988) Chain-fluorinated polyamines as tumor markers. IV. Comparison of 2-fluoroputrescine and 2, 2-difluoroputrescine as substrates of spermidine synthase in vitro and in vivo. IntJ Biochem 20:1299–1312

    PubMed  CAS  Google Scholar 

  247. Sarhan S, Knödgen B, Gerhart F, Seiler N (1987) Chain-fluorinated polyamines as tumor markers-I. In vivo transformation of 2, 2-difluoroputrescine into 6, 6-difluorospermidine and 6, 6-difluorospermine. Int J Biochem 19:843–852

    PubMed  CAS  Google Scholar 

  248. Hammond JE, Herbst EJ (1968) Analysis of polyamines by thin-layer chromatography. Anal Biochem 22:474–484

    PubMed  CAS  Google Scholar 

  249. Seiler N, Wiechmann M (1965) Determination of amines on the 10-10-mole scale. Separation of 1-dimethylamino-naphthalene-5-sulfonyl amides by thin-layer chromatography. Experientia 21:203–204

    PubMed  CAS  Google Scholar 

  250. Fleisher JH, Russell DH (1975) Estimation of urinary diamines and polyamines by thin-layer chromatography. J Chromatogr 110:335–340

    PubMed  CAS  Google Scholar 

  251. Marton LJ, Russell DH, Levy CC (1973) Measurement of putrescine, spermidine, and spermine in physiological fluids by use of an amino acid analyzer. Clin Chem 19:923–926

    PubMed  CAS  Google Scholar 

  252. Seiler N, Knödgen B (1985) Determination of polyamines and related compounds by reversed-phase high-perfomance liquid chromatography: improved separation systems.J Chromatogr 339:45–57

    CAS  Google Scholar 

  253. Kabra PM, Lee HK, Lubich WP, Marton LW (1986) Solid-phase extraction and determination of dansyl derivatives of unconjugated and acetylated polyamines by reversed-phase liquid chromatography; improved separation systems for polyamines in cerebrospinal fluid, urine and tissue. J Chromatogr Biomed Appl 380:19–32

    CAS  Google Scholar 

  254. Morgan DM (1998) Determination of polyamines as their benzoylated derivatives by HPLC. Methods Mol Biol 79:111–118

    PubMed  CAS  Google Scholar 

  255. Håkkinen MR, Keinanen TA, Vepsalainen J, Khomutov AR, Alhonen L, Janne J, Auriola S (2007) Analysis of underivatized polyamines by reversed phase liquid chromatography with electrospray tandem mass spectrometry. J Pharm Biomed Anal 45:625–634

    PubMed  Google Scholar 

  256. Håkkinen MR, Keinanen TA, Vepsalainen J, Khomutov AR, Alhonen L, Janne J, Auriola S (2008) Quantitative determination of underivatized polyamines by using isotope dilution RP-LC-ESI-MS/MS. J Pharm Biomed Anal 48:414–421

    PubMed  Google Scholar 

  257. Chen GG, Turecki G, Mamer OA (2009)A quantitative GC-MS method for three major polyamines in postmortem brain cortex.J Mass Spectrom 44:1203–1210

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratories on polyamines has been supported by NIH (CA-018138 and GM-26290 to AEP; CA-51085 and CA-98454 to RAC) and by grants from Komen for the Cure KG08923, and the Samuel Waxman Cancer Research Foundation (to RAC).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pegg, A.E., Casero, R.A. (2011). Current Status of the Polyamine Research Field. In: Pegg, A., Casero, Jr., R. (eds) Polyamines. Methods in Molecular Biology, vol 720. Humana Press. https://doi.org/10.1007/978-1-61779-034-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-034-8_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-033-1

  • Online ISBN: 978-1-61779-034-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics