Skip to main content

Imaging Fluorescently Tagged Phytophthora Effector Proteins Inside Infected Plant Tissue

  • Protocol
  • First Online:
Plant Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 712))

Abstract

Assays to determine the role of pathogen effectors within an infected plant cell are yielding valuable information about which host processes are targeted to allow successful pathogen colonization. However, this does not necessarily inform on the cellular location of these interactions, or if these effector–virulence target interactions occur only in the presence of the pathogen. Here, we describe techniques to allow the subcellular localization of pathogen effectors inside infected plant cells or tissues, based largely on infiltration of plant tissue by Agrobacterium tumefaciens and its delivery of DNA encoding fluorescent protein-tagged effectors, and subsequent confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones, J. D. and Dangl, J. L. (2006) The plant immune system. Nature 444, 323–329.

    Article  PubMed  CAS  Google Scholar 

  2. Block, A., Li, G., Fu, Z. Q., and Alfano, J. R. (2008) Phytopathogen type III effector weaponry and their plant targets. Curr. Opin. Plant Biol. 11, 396–403.

    Article  PubMed  CAS  Google Scholar 

  3. Shan, W., Cao, M., Leung, D., and Tyler, B. M. (2004) The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Mol. Plant Microbe Interact. 17, 394–403.

    Article  PubMed  CAS  Google Scholar 

  4. Allen, R. L., Bittner-Eddy, P. D., Grenville-Briggs, L. J., Meitz, J. C., Rehmany, A. P., Rose, L. E., and Beynon, J. L. (2004) Host-parasite co-evolutionary conflict between Arabidopsis and downy mildew. Science 306, 1957–1960.

    Article  PubMed  CAS  Google Scholar 

  5. Rehmany, A. P., Gordon, A., Rose, L. E., Allen, R. L., Armstrong, M. R., Whisson, S. C., et al. (2005) Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 7, 1839–1850.

    Article  Google Scholar 

  6. Armstrong, M. R., Whisson, S. C., Pritchard, L., Bos, J. I., Venter, E., Avrova, A. O., et al. (2005) An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognised in the host cytoplasm. Proc. Natl Acad. Sci. U. S. A. 102, 7766–7771.

    Article  PubMed  CAS  Google Scholar 

  7. van Poppel, P. M. A. J., Guo, J., van de Vondervoort, P. J. I., Jung, M. W. M., Birch, P. R. J., Whisson, S. C., and Govers, F. (2008) The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector. Mol. Plant Microbe Interact. 21, 1460–1470.

    Article  PubMed  Google Scholar 

  8. Vleeshouwers, V. G., Rietman, H., Krenek, P., Champouret, N., Young, C., Oh, S. K., et al. (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 3, e2875. doi:10.1371/journal.pone.0002875.

    Article  PubMed  Google Scholar 

  9. Qutob, D., Tedman-Jones, J., Dong, S., Kuflu, K., Pham, H., Wang, Y., et al. (2009) Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a. PLoS ONE 4, e5066. doi:10.1371/journal.pone.0005066.

    Article  PubMed  Google Scholar 

  10. Dong, S., Qutob, D., Tedman-Jones, J., Kuflu, K., Wang, Y., Tyler, B.M., and Gijzen, M. (2009) The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains. PLoS ONE 4, e5556. doi:10.1371/journal.pone.0005556.

    Article  PubMed  Google Scholar 

  11. Whisson, S. C., Boevink, P. C., Moleleki, L., Avrova, A. O., Morales, J. G., Gilroy, E. M., et al. (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450, 115–118.

    Article  PubMed  CAS  Google Scholar 

  12. Dou, D., Kale, S. D., Wang, X., Jiang, R. H., Bruce, N. A., Arredondo, F. D., et al. (2008) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20, 1930–1947.

    Article  PubMed  CAS  Google Scholar 

  13. Win, J., Morgan, W., Bos, J., Krasileva, K. V., Cano, L. M., Chaparro-Garcia, A., et al. (2007) Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19, 2349–2369.

    Article  PubMed  CAS  Google Scholar 

  14. Dou, D., Kale, S. D., Wang, X., Chen, Y., Wang, Q., Wang, X., et al. (2008) Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. Plant Cell 20, 1118–1133.

    Article  PubMed  CAS  Google Scholar 

  15. Bos, J. I., Armstrong, M. R., Gilroy, E. M., Boevink, P. C., Hein, I., Taylor, R. M., et al. (2010) Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc. Natl Acad. Sci. U. S. A. 107, 9909–9914.

    Article  PubMed  CAS  Google Scholar 

  16. Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H., Aerts, A., et al. (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313, 1261–1266.

    Article  PubMed  CAS  Google Scholar 

  17. Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H., Handsaker, R. E., Cano, L. M., et al. (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461, 393–398.

    Article  PubMed  CAS  Google Scholar 

  18. Judelson, H. S., Ah-Fong, A. M., Aux, G., Avrova, A. O., Bruce, C., Cakir, C., et al. (2008) Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol. Plant Microbe Interact. 21, 433–447.

    Article  PubMed  CAS  Google Scholar 

  19. Hein, I, Gilroy E. M., Armstrong, M. R., and Birch, P. R. J. (2009) The zig-zag-zig in oomycete–plant interactions. Mol. Plant Pathol. 10, 547–562. doi:10.1111/j.1364-3703.2009.00547.x.

    Article  PubMed  CAS  Google Scholar 

  20. Song, J., Win, J., Tian, M., Schornack, S., Kaschani, F., Ilyas, M., et al. (2009) Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc. Natl Acad. Sci. U. S. A. 106, 1654–1659.

    Article  PubMed  CAS  Google Scholar 

  21. Damasceno, C. M., Bishop, J. G., Ripoll, D. R., Win, J., Kamoun, S., and Rose, J. K. (2008) Structure of the glucanase inhibitor protein (GIP) family from Phytophthora species suggests coevolution with plant endo-beta-1,3-glucanases. Mol. Plant Microbe Interact. 21, 820–830.

    Article  PubMed  CAS  Google Scholar 

  22. Sun, W. X., Jia, Y. J., Feng, B. Z., O’Neill, N. R., Zhu, X. P., Xie, B. Y., and Zhang, X. G. (2009) Functional analysis of Pcipg2 from the straminopilous plant pathogen Phytophthora capsici. Genesis 47, 535–544. doi:10.1002/dvg.20530.

    Article  PubMed  CAS  Google Scholar 

  23. Liu, Z., Bos, J., Armstrong, M., Whisson, S. C., da Cunha, L., Torto, T., et al. (2005) Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Mol. Biol. Evol. 22, 659–672.

    Article  PubMed  CAS  Google Scholar 

  24. Thieme, F., Szczesny, R., Urban, A., Kirchner, O., Hause, G., and Bonas, U. (2007) New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol. Plant Microbe Interact. 20, 1250–1261.

    Article  PubMed  CAS  Google Scholar 

  25. Doehlemann, G., van der Linde, K., Assmann, D., Schwammbach, D., Hof, A., Mohanty, A., et al. (2009) Pep1, a secreted effector ­protein of Ustilago maydis, is required for ­successful invasion of plant cells. PLoS Pathog. 5, e1000290. doi:10.1371/journal.ppat.1000290.

    Article  PubMed  Google Scholar 

  26. Mosquera, G., Giraldo, M. C., Khang, C. H., Coughlan, S., and Valent, B. (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21, 1273–1290.

    Article  PubMed  CAS  Google Scholar 

  27. Chapman, S., Oparka, K. J., and Roberts, A. G. (2005) New tools for in vivo fluorescence tagging. Curr. Opin. Plant Biol. 8, 565–573.

    Article  PubMed  CAS  Google Scholar 

  28. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572.

    Article  PubMed  CAS  Google Scholar 

  29. Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl Acad. Sci. U. S. A. 94, 2122–2127.

    Article  PubMed  CAS  Google Scholar 

  30. Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (2002) A monomeric red fluorescent protein. Proc. Natl Acad. Sci. U. S. A. 99, 7877–7882.

    Article  PubMed  CAS  Google Scholar 

  31. Boevink, P., Martin, B., Oparka, K., Cruz, S. S., and Hawes, C. (1999) Transport of virally expressed green fluorescent protein through the secretory pathway in tobacco leaves is inhibited by cold shock and brefeldin A. Planta 208, 392–400.

    Article  CAS  Google Scholar 

  32. Zheng, H., Kunst, L., Hawes, C., and Moore, I. (2004) A GFP-based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. Plant J. 37, 398–414.

    Article  PubMed  CAS  Google Scholar 

  33. Gilroy, E. M., Hein, I., van der Hoorn, R., Boevink, P. C., Venter, E., McLellan, H., et al. (2007) Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J. 52, 1–13.

    Article  PubMed  CAS  Google Scholar 

  34. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual, 2nd edition. Cold Spring Harbor Press, New York.

    Google Scholar 

  35. Mattanovich, D., Rüker, F., Machado, A. C., Laimer, M., Regner, F., Steinkellner, H., et al. (1989) Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res. 17, 6747.

    Article  PubMed  CAS  Google Scholar 

  36. Mersereau, M., Pazour, G. J., and Das, A. (1990) Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90, 149–151.

    Article  PubMed  CAS  Google Scholar 

  37. Shaw, C. H. (1995) Introduction of cloning plasmids into Agrobacterium tumefaciens. pp 33–37. In: Methods in Molecular Biology, vol. 49: Plant gene transfer and expression protocols. H. Jones (ed.). Humana Press, Totowa, NJ.

    Chapter  Google Scholar 

  38. Latijnhouwers, M., Hawes, C., Carvalho, C., Oparka, K., Gillingham, A. K., and Boevink, P. C. (2005) An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. Plant J. 44, 459–470.

    Article  PubMed  CAS  Google Scholar 

  39. Batoko, H., Zheng, H. Q., Hawes, C., and Moore, I. (2000) A rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12, 2201–2218.

    Article  PubMed  CAS  Google Scholar 

  40. Avrova, A. O., Boevink, P. C., Young, V., Grenville-Briggs, L. J., van West, P., Birch, P. R. J., and Whisson, S. C. (2008) A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cell. Microbiol. 10, 2271–2284.

    Article  PubMed  CAS  Google Scholar 

  41. Judelson, H. S. and Ah Fong, A. M. V. (2009) Progress and challenges in oomycete transformation. pp 435–453. In: Oomycete genetics and genomics: diversity, plant and animal interactions, and toolbox. S. Kamoun and K. Lamour (eds.). John Wiley & sons, Hoboken, NJ.

    Google Scholar 

Download references

Acknowledgments

PCB and SW are funded by the Scottish Government Rural and Environment Research and Analysis Directorate (RERAD) and the Biotechnology and Biological Sciences Research Council (BBSRC), UK. PRJB is funded by the University of Dundee, UK, and the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Whisson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boevink, P.C., Birch, P.R.J., Whisson, S.C. (2011). Imaging Fluorescently Tagged Phytophthora Effector Proteins Inside Infected Plant Tissue. In: McDowell, J. (eds) Plant Immunity. Methods in Molecular Biology, vol 712. Humana Press. https://doi.org/10.1007/978-1-61737-998-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-998-7_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-997-0

  • Online ISBN: 978-1-61737-998-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics