Skip to main content

RNAi-Based Functional Pharmacogenomics

  • Protocol
  • First Online:
Disease Gene Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 700))

Abstract

Experimental alteration of gene expression is a powerful technique for functional characterization of disease genes. RNA interference (RNAi) is a naturally occurring mechanism of gene regulation, which is triggered by the introduction of double-stranded RNA into a cell. This phenomenon can be synthetically exploited to down-regulate expression of specific genes by transfecting mammalian cells with synthetic short interfering RNAs (siRNAs). These siRNAs can be designed to silence the expression of specific genes bearing a particular target sequence in high-throughput (HT) siRNA experimental systems and may potentially be presented as a therapeutic strategy for inhibiting transcriptional regulation of genes. This can constitute a strategy that can inhibit targets that are not tractable by small molecules such as chemical compounds. Large-scale experiments using low-dose drug exposure combined with siRNA also represent a promising discovery strategy for the purpose of identifying synergistic targets that facilitate synthetic lethal combination phenotypes. In light of such advantageous applications, siRNA technology has become an ideal research tool for studying gene function. In this chapter, we focus on the application of RNAi, with particular focus on HT siRNA phenotype profiling, to support cellular pharmacogenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elbashir SM, Harborth J, Weber K, Tuschl T (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199–213

    Article  CAS  PubMed  Google Scholar 

  2. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  3. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  4. Huppi K, Martin SE, Caplen NJ (2005) Defining and assaying RNAi in mammalian cells. Mol Cell 17:1–10

    Article  CAS  PubMed  Google Scholar 

  5. Tuschl T (2001) RNA interference and small interfering RNAs. Chembiochem 2:239–245

    Article  CAS  PubMed  Google Scholar 

  6. Nakayashiki H, Nguyen QB (2008) RNA interference: roles in fungal biology. Curr Opin Microbiol 11:494–502

    Article  CAS  PubMed  Google Scholar 

  7. Travella S, Keller B (2009) Down-regulation of gene expression by RNA-induced gene silencing. Methods Mol Biol 478:185–199

    Article  PubMed  CAS  Google Scholar 

  8. Tomari Y, Du T, Zamore PD (2007) Sorting of Drosophila small silencing RNAs. Cell 130:299–308

    Article  CAS  PubMed  Google Scholar 

  9. Matranga C, Zamore PD (2007) Small silencing RNAs. Curr Biol 17:R789–R793

    Article  CAS  PubMed  Google Scholar 

  10. Zamore PD (2004) Plant RNAi: how a viral silencing suppressor inactivates siRNA. Curr Biol 14:R198–R200

    Article  CAS  PubMed  Google Scholar 

  11. Roguev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR, Qu H, Shales M, Park HO, Hayles J, Hoe KL, Kim DU, Ideker T, Grewal SI, Weissman JS, Krogan NJ (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322:405–410

    Article  CAS  PubMed  Google Scholar 

  12. Volpe T, Schramke V, Hamilton GL, White SA, Teng G, Martienssen RA, Allshire RC (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11:137–146

    Article  CAS  PubMed  Google Scholar 

  13. Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555

    Article  CAS  PubMed  Google Scholar 

  14. Caplen NJ, Mousses S (2003) Short interfering RNA (siRNA)-mediated RNA interference (RNAi) in human cells. Ann N Y Acad Sci 1002:56–62

    Article  CAS  PubMed  Google Scholar 

  15. Haley B, Tang G, Zamore PD (2003) In vitro analysis of RNA interference in Drosophila melanogaster. Methods 30:330–336

    Article  CAS  PubMed  Google Scholar 

  16. Stroschein-Stevenson SL, Foley E, O’Farrell PH, Johnson AD (2009) Phagocytosis of Candida albicans by RNAi-treated Drosophila S2 cells. Methods Mol Biol 470:347–358

    Article  CAS  PubMed  Google Scholar 

  17. Grishok A (2005) RNAi mechanisms in Caenorhabditis elegans. FEBS Lett 579:5932–5939

    Article  CAS  PubMed  Google Scholar 

  18. Grishok A, Hoersch S, Sharp PA (2008) RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans. Proc Natl Acad Sci USA 105:20386–20391

    Article  CAS  PubMed  Google Scholar 

  19. Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30:313–321

    Article  CAS  PubMed  Google Scholar 

  20. Kim JK, Gabel HW, Kamath RS, Tewari M, Pasquinelli A, Rual JF, Kennedy S, Dybbs M, Bertin N, Kaplan JM, Vidal M, Ruvkun G (2005) Functional genomic analysis of RNA interference in C. elegans. Science 308:1164–1167

    Article  CAS  PubMed  Google Scholar 

  21. Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Roder M, Finell J, Hantsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gonczy P, Coulson A, Hyman AA, Echeverri CJ (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469

    Article  CAS  PubMed  Google Scholar 

  22. Mariotti M, Castiglioni S, Maier JA (2009) Inhibition of T24 human bladder carcinoma cell migration by RNA interference suppressing the expression of HD-PTP. Cancer Lett 273:155–163

    Article  CAS  PubMed  Google Scholar 

  23. Medarova Z, Kumar M, Ng SW, Yang J, Barteneva N, Evgenov NV, Petkova V, Moore A (2008) Multifunctional magnetic nanocarriers for image-tagged SiRNA delivery to intact pancreatic islets. Transplantation 86:1170–1177

    Article  CAS  PubMed  Google Scholar 

  24. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191–3197

    Article  CAS  PubMed  Google Scholar 

  25. Sun X, Rogoff HA, Li CJ (2008) Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol 26:1379–1382

    Article  CAS  PubMed  Google Scholar 

  26. Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, Janke O, Endruschat J, Durieux B, Roder N, Loffler K, Lange C, Fechtner M, Mopert K, Fisch G, Dames S, Arnold W, Jochims K, Giese K, Wiedenmann B, Scholz A, Kaufmann J (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68:9788–9798

    Article  CAS  PubMed  Google Scholar 

  27. Rines DR, Gomez-Ferreria MA, Zhou Y, DeJesus P, Grob S, Batalov S, Labow M, Huesken D, Mickanin C, Hall J, Reinhardt M, Natt F, Lange J, Sharp DJ, Chanda SK, Caldwell JS (2008) Whole genome functional analysis identifies novel components required for mitotic spindle integrity in human cells. Genome Biol 9:R44

    Article  PubMed  CAS  Google Scholar 

  28. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev 3:737–747

    Article  CAS  Google Scholar 

  29. Filipowicz W (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122:17–20

    Article  CAS  PubMed  Google Scholar 

  30. Ohrt T, Mutze J, Staroske W, Weinmann L, Hock J, Crell K, Meister G, Schwille P (2008) Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res 36:6439–6449

    Article  CAS  PubMed  Google Scholar 

  31. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci USA 105:512–517

    Article  CAS  PubMed  Google Scholar 

  32. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437

    Article  CAS  PubMed  Google Scholar 

  33. Ganesan AK, Ho H, Bodemann B, Petersen S, Aruri J, Koshy S, Richardson Z, Le LQ, Krasieva T, Roth MG, Farmer P, White MA (2008) Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet 4:e1000298

    Article  PubMed  CAS  Google Scholar 

  34. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ, Zhao Z, Smogorzewska A, Sowa ME, Ang XL, Westbrook TF, Liang AC, Chang K, Hackett JA, Harper JW, Hannon GJ, Elledge SJ (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624

    Article  CAS  PubMed  Google Scholar 

  35. Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, Elledge SJ, Hannon GJ, Chang K (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319:617–620

    Article  CAS  PubMed  Google Scholar 

  36. Paddison PJ, Hannon GJ (2003) siRNAs and shRNAs: skeleton keys to the human genome. Curr Opin Mol Ther 5:217–224

    CAS  PubMed  Google Scholar 

  37. Amarzguioui M, Holen T, Babaie E, Prydz H (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595

    Article  CAS  PubMed  Google Scholar 

  38. Amarzguioui M, Prydz H (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058

    Article  CAS  PubMed  Google Scholar 

  39. Boden D, Pusch O, Lee F, Tucker L, Shank PR, Ramratnam B (2003) Promoter choice affects the potency of HIV-1 specific RNA interference. Nucleic Acids Res 31:5033–5038

    Article  CAS  PubMed  Google Scholar 

  40. Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R, Berkhout B (2004) Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 78:2601–2605

    Article  CAS  PubMed  Google Scholar 

  41. Gitlin L, Karelsky S, Andino R (2002) Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418:430–434

    Article  CAS  PubMed  Google Scholar 

  42. Sano M, Sierant M, Miyagishi M, Nakanishi M, Takagi Y, Sutou S (2008) Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res 36:5812–5821

    Article  CAS  PubMed  Google Scholar 

  43. Paddison PJ, Hannon GJ (2002) RNA interference: the new somatic cell genetics? Cancer Cell 2:17–23

    Article  CAS  PubMed  Google Scholar 

  44. Ui-Tei K, Naito Y, Saigo K (2007) Guidelines for the selection of effective short-interfering RNA sequences for functional genomics. Methods Mol Biol 361:201–216

    CAS  PubMed  Google Scholar 

  45. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  CAS  PubMed  Google Scholar 

  46. Jones SW, Souza PM, Lindsay MA (2004) siRNA for gene silencing: a route to drug target discovery. Curr Opin Pharmacol 4:522–527

    Article  CAS  PubMed  Google Scholar 

  47. Rossi JJ (2008) Expression strategies for short hairpin RNA interference triggers. Hum Gene Ther 19:313–317

    Article  CAS  PubMed  Google Scholar 

  48. Han SE, Kang H, Shim GY, Suh MS, Kim SJ, Kim JS, Oh YK (2008) Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. Int J Pharm 353:260–269

    CAS  PubMed  Google Scholar 

  49. Sun TM, Du JZ, Yan LF, Mao HQ, Wang J (2008) Self-assembled biodegradable ­micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 29:4348–4355

    Article  CAS  PubMed  Google Scholar 

  50. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  CAS  PubMed  Google Scholar 

  51. Kuuselo R, Savinainen K, Azorsa DO, Basu GD, Karhu R, Tuzmen S, Mousses S, Kallioniemi A (2007) Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. Cancer Res 67:1943–1949

    Article  CAS  PubMed  Google Scholar 

  52. Ovcharenko D, Jarvis R, Hunicke-Smith S, Kelnar K, Brown D (2005) High-throughput RNAi screening in vitro: from cell lines to primary cells. RNA 11:985–993

    Article  CAS  PubMed  Google Scholar 

  53. Favard C, Dean DS, Rols MP (2007) Electrotransfer as a non viral method of gene delivery. Curr Gene Ther 7:67–77

    Article  CAS  PubMed  Google Scholar 

  54. Anderson E, Boese Q, Khvorova A, Karpilow J (2008) Identifying siRNA-induced off-targets by microarray analysis. Methods Mol Biol 442:45–63

    Article  CAS  PubMed  Google Scholar 

  55. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  PubMed  Google Scholar 

  56. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 101:1892–1897

    Article  CAS  PubMed  Google Scholar 

  57. Heidel JD, Hu S, Liu XF, Triche TJ, Davis ME (2004) Lack of interferon response in animals to naked siRNAs. Nat Biotechnol 22:1579–1582

    Article  CAS  PubMed  Google Scholar 

  58. Ma Z, Li J, He F, Wilson A, Pitt B, Li S (2005) Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun 330:755–759

    Article  CAS  PubMed  Google Scholar 

  59. Uprichard SL (2005) The therapeutic potential of RNA interference. FEBS Lett 579:5996–6007

    Article  CAS  PubMed  Google Scholar 

  60. Robbins MA, Rossi JJ (2005) Sensing the danger in RNA. Nat Med 11:250–251

    Article  CAS  PubMed  Google Scholar 

  61. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270

    Article  CAS  PubMed  Google Scholar 

  62. Kim DH, Longo M, Han Y, Lundberg P, Cantin E, Rossi JJ (2004) Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 22:321–325

    Article  CAS  PubMed  Google Scholar 

  63. Caplen NJ (2002) A new approach to the inhibition of gene expression. Trends Biotechnol 20:49–51

    Article  CAS  PubMed  Google Scholar 

  64. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98:9742–9747

    Article  CAS  PubMed  Google Scholar 

  65. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M (2003) Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101:1566–1569

    Article  CAS  PubMed  Google Scholar 

  66. Scherr M, Steinmann D, Eder M (2004) RNA interference (RNAi) in hematology. Ann Hematol 83:1–8

    Article  CAS  PubMed  Google Scholar 

  67. Scherr M, Venturini L, Eder M (2009) Knock-down of gene expression in hematopoietic cells. Methods Mol Biol 506:207–219

    Article  CAS  PubMed  Google Scholar 

  68. Bausero MA, Bharti A, Page DT, Perez KD, Eng JW, Ordonez SL, Asea EE, Jantschitsch C, Kindas-Muegge I, Ciocca D, Asea A (2006) Silencing the hsp25 gene eliminates migration capability of the highly metastatic murine 4T1 breast adenocarcinoma cell. Tumour Biol 27:17–26

    Article  CAS  PubMed  Google Scholar 

  69. Logashenko EB, Vladimirova AV, Repkova MN, Venyaminova AG, Chernolovskaya EL, Vlassov VV (2004) Silencing of MDR 1 gene in cancer cells by siRNA. Nucleosides Nucleotides Nucleic Acids 23:861–866

    Article  CAS  PubMed  Google Scholar 

  70. Nagy P, Arndt-Jovin DJ, Jovin TM (2003) Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB1-overexpressing cells. Exp Cell Res 285:39–49

    Article  CAS  PubMed  Google Scholar 

  71. Stierle V, Laigle A, Jolles B (2005) Modulation of MDR1 gene expression in multidrug resistant MCF7 cells by low concentrations of small interfering RNAs. Biochem Pharmacol 70:1424–1430

    Article  CAS  PubMed  Google Scholar 

  72. Sumimoto H, Yamagata S, Shimizu A, Miyoshi H, Mizuguchi H, Hayakawa T, Miyagishi M, Taira K, Kawakami Y (2004) Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene Ther 12:95–100

    Article  CAS  Google Scholar 

  73. Wilda M, Fuchs U, Wossmann W, Borkhardt A (2002) Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 21:5716–5724

    Article  CAS  PubMed  Google Scholar 

  74. Withey JM, Harvey AJ, Crompton MR (2006) RNA interference targeting of Bcr-Abl increases chronic myeloid leukemia cell killing by 17-allylamino-17-demethoxygeldanamycin. Leuk Res 30:553–560

    Article  CAS  PubMed  Google Scholar 

  75. Wu H, Hait WN, Yang JM (2003) Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 63:1515–1519

    CAS  PubMed  Google Scholar 

  76. Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, Coukos G (2003) Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 303:1169–1178

    Article  CAS  PubMed  Google Scholar 

  77. Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2:243–247

    Article  CAS  PubMed  Google Scholar 

  78. Burgess DJ, Doles J, Zender L, Xue W, Ma B, McCombie WR, Hannon GJ, Lowe SW, Hemann MT (2008) Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc Natl Acad Sci USA 105:9053–9058

    Article  PubMed  Google Scholar 

  79. Frankish H (2003) Consortium uses RNAi to uncover genes’ function. Lancet 361:584

    Article  PubMed  Google Scholar 

  80. Gobeil S, Zhu X, Doillon CJ, Green MR (2008) A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes Dev 22:2932–2940

    Article  CAS  PubMed  Google Scholar 

  81. Ito M, Kawano K, Miyagishi M, Taira K (2005) Genome-wide application of RNAi to the discovery of potential drug targets. FEBS Lett 579:5988–5995

    Article  CAS  PubMed  Google Scholar 

  82. Chen M, Du Q, Zhang H, Wang X, Liang Z (2007) High-throughput screening using siRNA (RNAi) libraries. Expert Rev Mol Diagn 7:281–291

    Article  CAS  PubMed  Google Scholar 

  83. Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O’Shaughnessy A, Gnoj L, Scobie K, Chang K, Westbrook T, Cleary M, Sachidanandam R, McCombie WR, Elledge SJ, Hannon GJ (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428:427–431

    Article  CAS  PubMed  Google Scholar 

  84. Sachse C, Krausz E, Kronke A, Hannus M, Walsh A, Grabner A, Ovcharenko D, Dorris D, Trudel C, Sonnichsen B, Echeverri CJ (2005) High-throughput RNA interference strategies for target discovery and validation by using synthetic short interfering RNAs: functional genomics investigations of biological pathways. Methods Enzymol 392:242–277

    Article  CAS  PubMed  Google Scholar 

  85. Kimura J, Nguyen ST, Liu H, Taira N, Miki Y, Yoshida K (2008) A functional genome-wide RNAi screen identifies TAF1 as a regulator for apoptosis in response to genotoxic stress. Nucleic Acids Res 36:5250–5259

    Article  CAS  PubMed  Google Scholar 

  86. Dykxhoorn DM, Lieberman J (2005) The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56:401–423

    Article  CAS  PubMed  Google Scholar 

  87. Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hautaniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dougherty ER, Suh E, Kallioniemi O (2003) RNAi microarray analysis in cultured mammalian cells. Genome Res 13:2341–2347

    Article  CAS  PubMed  Google Scholar 

  88. Ortega-Paino E, Fransson J, Ek S, Borrebaeck CA (2008) Functionally associated targets in mantle cell lymphoma as defined by DNA microarrays and RNA interference. Blood 111:1617–1624

    Article  CAS  PubMed  Google Scholar 

  89. Semizarov D, Kroeger P, Fesik S (2004) siRNA-mediated gene silencing: a global genome view. Nucleic Acids Res 32:3836–3845

    Article  CAS  PubMed  Google Scholar 

  90. Vanhecke D, Janitz M (2004) High-throughput gene silencing using cell arrays. Oncogene 23:8353–8358

    Article  CAS  PubMed  Google Scholar 

  91. Wheeler DB, Carpenter AE, Sabatini DM (2005) Cell microarrays and RNA interference chip away at gene function. Nat Genet 37(Suppl):S25–S30

    Article  CAS  PubMed  Google Scholar 

  92. Castel D, Debily MA, Pitaval A, Gidrol X (2007) Cell microarray for functional exploration of genomes. Methods Mol Biol 381:375–384

    CAS  PubMed  Google Scholar 

  93. Fjeldbo C, Misund K, Günther C, Langaas M, Steigedal T, Thommesen L, Laegreid A, Bruland T (2008) Functional studies on transfected cell microarray analysed by linear regression modelling. Nucleic Acids Res 36:e97

    Article  PubMed  CAS  Google Scholar 

  94. Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M, Minna JD, Michnoff C, Hao W, Roth MG, Xie XJ, White MA (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446:815–819

    Article  CAS  PubMed  Google Scholar 

  95. Zhang X, Yang X, Chung N, Gates A, Stec E, Kunapuli P, Holder D, Ferrer M, Espeseth A (2006) Robust statistical methods for hit selection in RNA interference high-throughput screening experiments. Pharmacogenomics 7:299–309

    Article  CAS  PubMed  Google Scholar 

  96. Thomas RK, Weir B, Meyerson M (2006) Genomic approaches to lung cancer. Clin Cancer Res 12:4384s–4391s

    Article  CAS  PubMed  Google Scholar 

  97. Ghosh D, Poisson L (2009) “Omics” data and levels of evidence for biomarker discovery. Genomics 93:13–16

    Article  CAS  PubMed  Google Scholar 

  98. Tuzmen S, Kiefer J, Mousses S (2007) Validation of short interfering RNA knockdowns by quantitative real-time PCR. Methods Mol Biol 353:177–203

    PubMed  Google Scholar 

  99. Mehler MF (2008) Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol 86:305–341

    Article  CAS  PubMed  Google Scholar 

  100. Meng F, Dong B, Li H, Fan D, Ding J (2009) RNAi-mediated inhibition of Raf-1 leads to decreased angiogenesis and tumor growth in gastric cancer. Cancer Biol Ther 8:174–179

    Article  CAS  PubMed  Google Scholar 

  101. Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, Downward J, Ellenberg J, Fraser AG, Hacohen N, Hahn WC, Jackson AL, Kiger A, Linsley PS, Lum L, Ma Y, Mathey-Prevot B, Root DE, Sabatini DM, Taipale J, Perrimon N, Bernards R (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the members of the Pharma­ceutical Genomics Division at the Translational Genomics Research Institute. A special acknowledgement goes to Dr. H. Yin, Dr. Q. Que, D. Chow, Dr. G. Basu, Dr. N. Meurice, and Dr. J. Kiefer for their critical feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukru Tuzmen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tuzmen, S., Tuzmen, P., Arora, S., Mousses, S., Azorsa, D. (2011). RNAi-Based Functional Pharmacogenomics. In: DiStefano, J. (eds) Disease Gene Identification. Methods in Molecular Biology, vol 700. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-954-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-954-3_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-953-6

  • Online ISBN: 978-1-61737-954-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics