Skip to main content

Instruments and Methods in Proteomics

  • Protocol
  • First Online:
Data Mining in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 696))

Abstract

In the past decade, major developments in instrumentation and methodology have been achieved in proteomics. For proteome investigations of complex biological samples derived from cell cultures, tissues, or whole organisms, several techniques are state of the art. Especially, many improvements have been undertaken to quantify differences in protein expression between samples from, e.g., treated vs. untreated cells and healthy vs. control patients. In this review, we give a brief insight into the main techniques, including gel-based protein separation techniques, and the growing field of mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    CAS  PubMed  Google Scholar 

  2. Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323

    Article  CAS  PubMed  Google Scholar 

  3. Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  CAS  PubMed  Google Scholar 

  4. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    CAS  PubMed  Google Scholar 

  5. Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861

    Article  CAS  PubMed  Google Scholar 

  6. Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059

    Article  CAS  PubMed  Google Scholar 

  7. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  8. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    CAS  PubMed  Google Scholar 

  9. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  10. Bjellqvist B, Ek K, Righetti PG, Gianazza E, Görg A, Westermeier R, Postel W (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6:317–339

    Article  CAS  PubMed  Google Scholar 

  11. Görg A, Postel W, Gunther S (1988) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9:531–546

    Article  PubMed  Google Scholar 

  12. Luhn S, Berth M, Hecker M, Bernhardt J (2003) Using standard positions and image fusion to create proteome maps from collections of two-dimensional gel electrophoresis images. Proteomics 3:1117–1127

    Article  CAS  PubMed  Google Scholar 

  13. MacFarlane DE (1989) Two dimensional benzyldimethyl-n-hexadecylammonium chloride – sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis: a high capacity high resolution technique for the purification of proteins from complex mixtures. Anal Biochem 176:457–463

    Article  CAS  PubMed  Google Scholar 

  14. Eley MH, Burns PC, Kannapell CC, Campbell PS (1979) Cetyltrimethyl-ammonium bromide polyacrylamide gel electrophoresis: estimation of protein subunit molecular weights using cationic detergents. Anal Biochem 92:411–419

    Article  CAS  PubMed  Google Scholar 

  15. Helling S, Schmitt E, Joppich C, Schulenborg T, Mullner S, Felske-Muller S, Wiebringhaus T, Becker G, Linsenmann G, Sitek B, Lutter P, Meyer HE, Marcus K (2006) 2-D differential membrane proteome analysis of scarce protein samples. Proteomics 6:4506–4513

    Article  CAS  PubMed  Google Scholar 

  16. Rais I, Karas M, Schägger H (2004) Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification. Proteomics 4:2567–2571

    Article  CAS  PubMed  Google Scholar 

  17. Schägger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231

    Article  PubMed  Google Scholar 

  18. Marcus K, Joppich C, May C, Pfeiffer K, Sitek B, Meyer H, Stuehler K (2009) High-resolution 2DE. Methods Mol Biol 519:221–240

    Article  CAS  PubMed  Google Scholar 

  19. Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M (2009) Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev 28:816–843

    Article  CAS  PubMed  Google Scholar 

  20. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  CAS  PubMed  Google Scholar 

  21. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    Article  CAS  PubMed  Google Scholar 

  22. Sitek B, Luttges J, Marcus K, Kloppel G, Schmiegel W, Meyer HE, Hahn SA, Stuhler K (2005) Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinoma. Proteomics 5:2665–2679

    Article  CAS  PubMed  Google Scholar 

  23. Nyman TA (2001) The role of mass spectrometry in proteome studies. Biomol Eng 18:221–227

    Article  CAS  PubMed  Google Scholar 

  24. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  25. Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5:699–711

    Article  CAS  PubMed  Google Scholar 

  26. Wuhrer M, Deelder AM, Hokke CH (2005) Protein glycosylation analysis by liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 825:124–133

    Article  CAS  PubMed  Google Scholar 

  27. Boersema PJ, Mohammed S, Heck AJ (2009) Phosphopeptide fragmentation and analysis by mass spectrometry, J. Mass Spectrom 44:861–878

    Article  CAS  Google Scholar 

  28. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031

    Article  CAS  PubMed  Google Scholar 

  29. Urlaub H, Gronborg M, Richter F, Veenstra TD, Müller T, Tribl F, Meyer HE, Marcus K (2008) Common methods in proteomics. In: Nothwang HG, Pfeiffer SE (eds) Proteomics of the nervous system, 1st edn. Weinheim, Wiley-VCH

    Google Scholar 

  30. Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2:140–150

    Article  CAS  PubMed  Google Scholar 

  31. Mitulovic G, Mechtler K (2006) HPLC techniques for proteomics analysis - a short overview of latest developments. Brief Funct Genomic Proteomic 5:249–260

    Article  CAS  PubMed  Google Scholar 

  32. Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  CAS  PubMed  Google Scholar 

  33. Nägele E, Vollmer M, Horth P, Vad C (2004) 2D-LC/MS techniques for the identification of proteins in highly complex mixtures. Expert Rev Proteomics 1:37–46

    Article  PubMed  Google Scholar 

  34. Chervet JP, Ursem M, Salzmann JP (1996) Instrumental requirements for nanoscale liqid chromatography. Anal Chem 68:1507–1512

    Article  CAS  Google Scholar 

  35. Zaluzec EJ, Gage DA, Watson JT (1995) Matrix-assisted laser desorption ionization mass spectrometry: applications in peptide and protein characterization, Protein Expr Purif 6:109–123

    Article  CAS  PubMed  Google Scholar 

  36. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  PubMed  Google Scholar 

  37. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons. Anal Chem 60:2299–2301

    Article  CAS  PubMed  Google Scholar 

  38. Nordhoff E, Egelhofer V, Giavalisco P, Eickhoff H, Horn M, Przewieslik T, Theiss D, Schneider U, Lehrach H, Gobom J (2001) Large-gel two-dimensional electrophoresis-matrix assisted laser desorption/ionization-time of flight-mass spectrometry: an analytical challenge for studying complex protein mixtures. Electrophoresis 22:2844–2855

    Article  CAS  PubMed  Google Scholar 

  39. Stuhler K, Meyer HE (2004) MALDI: more than peptide mass fingerprints. Curr Opin Mol Ther 6:239–248

    PubMed  Google Scholar 

  40. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  41. Loo JA, Udseth HR, Smith RD (1989) Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. Anal Biochem 179:404–412

    Article  CAS  PubMed  Google Scholar 

  42. Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20:362–387

    Article  CAS  PubMed  Google Scholar 

  43. Iribarne JV, Thomson BA (1976) On the evaporation of small ions from charged droplets. J Chem Phys 64:2287–2294

    Article  CAS  Google Scholar 

  44. Dole M, Dole M, Mack LL, Mack LL, Hines RL, Hines RL, Mobley RC, Mobley RC, Ferguson LD, Ferguson LD, Alice MB, Alice MB (1968) Molecular Beams of Macroions. J Chem Phys 49:2240–2249

    Article  CAS  Google Scholar 

  45. Wollnik H (1993) Time-of-flight mass analyzers. Mass Spectrom Rev 12:89–114

    Article  CAS  Google Scholar 

  46. Balogh MP (2004) Debating resolution and mass accuracy in mass spectrometry. Spectroscopy 19:34–40

    CAS  Google Scholar 

  47. Schwartz JC, Senko MW, Syka JE (2002) A two-dimensional quadrupole ion trap mass spectrometer. J Am Soc Mass Spectrom 13:659–669

    Article  CAS  PubMed  Google Scholar 

  48. March RE (2000) Quadrupole ion mass spectrometry: a view at the turn of the century. Int J Mass Spectrom 200:285–312

    Article  CAS  Google Scholar 

  49. Douglas DJ, Frank AJ, Mao D (2005) Linear ion traps in mass spectrometry. Mass Spectrom Rev 24:1–29

    Article  CAS  PubMed  Google Scholar 

  50. Hager JW (2002) A new linear mass spectromter. Rapid Commun Mass Spectrom 16:512–526

    Article  CAS  Google Scholar 

  51. Wilm M, Neubauer G, Mann M (1996) Parent ion scans of unseparated peptide mixtures. Anal Chem 68:527–533

    Article  CAS  PubMed  Google Scholar 

  52. Steen H, Kuster B, Fernandez M, Pandey A, Mann M (2001) Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. Anal Chem 73:1440–1448

    Article  CAS  PubMed  Google Scholar 

  53. Hunter AP, Games DE (1994) Chromatographic and mass spectrometric methods for the identification of phosphorylation sites in phosphoproteins. Rapid Commun Mass Spectrom 8:559–570

    Article  CAS  PubMed  Google Scholar 

  54. Schlosser A, Pipkorn R, Bossemeyer D, Lehmann WD (2001) Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal Chem 73:170–176

    Article  CAS  PubMed  Google Scholar 

  55. Yocum AK, Chinnaiyan AM (2009) Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic 8:145–157

    Article  CAS  PubMed  Google Scholar 

  56. Busch FV, Paul W (1961) Isotopentrennung mit dem elektrischen. Massenfilter Zeitschrift für Physik 164:581–587

    Article  CAS  Google Scholar 

  57. Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz J, Hunt DF (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822

    CAS  PubMed  Google Scholar 

  58. Wang Y, Franzen J (1992) The non-linear resonance QUISTOR Part1: Potential distribution in hyperboloidal QUISTORs. Int J Mass Spectrom Ion Processes 112:167–178

    Article  Google Scholar 

  59. Wang Y, Franzen J, Wanczek KP (2009) The non-linear resonance ion trap. Part 2. A general theoretical analysis. Int J Mass Spectrom Ion Processes 124:125–144

    Article  Google Scholar 

  60. Wang Y, Franzen J (1994) The non-linear ion trap. Part 3. Multipole components in three types of practical ion trap. Int J Mass Spectrom Ion Processes 132:155–172

    Article  CAS  Google Scholar 

  61. Franzen J (1993) The non-linear ion trap: Part 4. Mass selcetive instability scan with multipole superposition. Int J Mass Spectrom Ion Processes 125:165–170

    Article  CAS  Google Scholar 

  62. Franzen J (1994) The non-linear ion trap. Part 5. Nature of non-linear resonances and resonant ion ejection. Int J Mass Spectrom Ion Processes 130:15–40

    Article  CAS  Google Scholar 

  63. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    Article  CAS  PubMed  Google Scholar 

  64. Comisarow MB, Marshall AG (1974) Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett 25:282–283

    Article  CAS  Google Scholar 

  65. Goodlett DR, Bruce JE, Anderson GA, Rist B, Pasa-Tolic L, Fiehn O, Smith RD, Aebersold R (2000) Protein identification with a single accurate mass of a cysteine-containing peptide and constrained database searches. Anal Chem 72:1112–1118

    Article  CAS  PubMed  Google Scholar 

  66. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham CR (2005) The Orbitrap: a new mass spectrometer, J. Mass Spectrom 40:430–443

    Article  CAS  Google Scholar 

  67. Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27:661–699

    Article  CAS  PubMed  Google Scholar 

  68. Scigelova M, Makarov A (2006) Orbitrap mass analyzer–overview and applications in proteomics. Proteomics 6(Suppl 2):16–21

    Article  PubMed  CAS  Google Scholar 

  69. Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    Article  CAS  PubMed  Google Scholar 

  70. Spengler B, Kirsch D, Kaufmann R, Jaeger E (1992) Peptide sequencing by matrix-assisted laser-desorption mass spectrometry. Rapid Commun Mass Spectrom 6:105–108

    Article  CAS  PubMed  Google Scholar 

  71. de Hoffmann E (1996) Tandem mass spectrometry: a primer. J Mass Spectrom 31:129–137

    Article  Google Scholar 

  72. Steen H, Kuster B, Mann M (2001) Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J Mass Spectrom 36:782–790

    Article  CAS  PubMed  Google Scholar 

  73. Aldini G, Regazzoni L, Orioli M, Rimoldi I, Facino RM, Carini M (2008) A tandem MS precursor-ion scan approach to identify variable covalent modification of albumin Cys34: a new tool for studying vascular carbonylation. J Mass Spectrom 43:1470–1481

    Article  CAS  PubMed  Google Scholar 

  74. Hopfgartner G, Varesio E, Tschappat V, Grivet C, Bourgogne E, Leuthold LA (2004) Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom 39:845–855

    Article  CAS  PubMed  Google Scholar 

  75. Yates JR III, Speicher S, Griffin PR, Hunkapiller T (1993) Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 214:397–408

    Article  CAS  PubMed  Google Scholar 

  76. Johnson RS, Martin SA, Biemann K, Stults JT, Watson JT (1987) Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal Chem 59:2621–2625

    Article  CAS  PubMed  Google Scholar 

  77. Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA 104:2193–2198

    Article  CAS  PubMed  Google Scholar 

  78. Perdivara I, Petrovich R, Allinquant B, Deterding LJ, Tomer KB, Przybylski M (2009) Elucidation of O-glycosylation structures of the beta-amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision induced dissociation. J Proteome Res 8:631–642

    Article  CAS  PubMed  Google Scholar 

  79. Alley WR Jr, Mechref Y, Novotny MV (2009) Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom 23:161–170

    Article  CAS  PubMed  Google Scholar 

  80. Wiesner J, Premsler T, Sickmann A (2008) Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 8:4466–4483

    Article  CAS  PubMed  Google Scholar 

  81. Carr SA, Huddleston MJ, Annan RS (1996) Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem 239:180–192

    Article  CAS  PubMed  Google Scholar 

  82. Huddleston MJ, Bean MF, Carr SA (1993) Collisional Fragmentation of Glycopeptides by Electrospary Ionization LC/MS and LC/MS/MS: Methods for selective detection of glycopeptides in protein digests. Anal Chem 65:877–884

    Article  CAS  PubMed  Google Scholar 

  83. Annan RS, Carr SA (1997) The essential role of mass spectrometry in characterizing protein structure: mapping posttranslational modifications. J Protein Chem 16:391–402

    Article  CAS  PubMed  Google Scholar 

  84. Williamson BL, Marchese J, Morrice NA (2006) Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Mol Cell Proteomics 5:337–346

    CAS  PubMed  Google Scholar 

  85. Gadgil HS, Bondarenko PV, Treuheit MJ, Ren D (2007) Screening and sequencing of glycated proteins by neutral loss scan LC/MS/MS method. Anal Chem 79:5991–5999

    Article  CAS  PubMed  Google Scholar 

  86. Langenfeld E, Zanger UM, Jung K, Meyer HE, Marcus K (2009) Mass spectrometry-based absolute quantification of microsomal cytochrome P450 2D6 in human liver. Proteomics 9:2313–2323

    Article  CAS  PubMed  Google Scholar 

  87. Unwin RD, Griffiths JR, Leverentz MK, Grallert A, Hagan IM, Whetton AD (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4:1134–1144

    Article  CAS  PubMed  Google Scholar 

  88. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  89. Eng JK, McCormack AL, Yates JR 3rd (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  90. Biemann K (1990) Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol 193:886–887

    Article  CAS  PubMed  Google Scholar 

  91. Zhang W, Chait BT (2000) ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem 72:2482–2489

    Article  CAS  PubMed  Google Scholar 

  92. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  PubMed  Google Scholar 

  93. Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    Article  CAS  PubMed  Google Scholar 

  94. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  CAS  PubMed  Google Scholar 

  95. Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73:2836–2842

    Article  CAS  PubMed  Google Scholar 

  96. Staes A, Demol H, Van DJ, Martens L, Vandekerckhove J, Gevaert K (2004) Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J Proteome Res 3:786–791

    Article  CAS  PubMed  Google Scholar 

  97. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  98. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945

    Article  CAS  PubMed  Google Scholar 

  99. Kito K, Ito T (2008) Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics 9:263–274

    Article  CAS  PubMed  Google Scholar 

  100. Julka S, Regnier FE (2005) Recent advancements in differential proteomics based on stable isotope coding. Brief Funct Genomic Proteomic 4:158–177

    Article  CAS  PubMed  Google Scholar 

  101. Mueller LN, Brusniak MY, Mani DR, Aebersold R (2008) An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7:51–61

    Article  CAS  PubMed  Google Scholar 

  102. Shiio Y, Aebersold R (2006) Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Nat Protoc 1:139–145

    Article  CAS  PubMed  Google Scholar 

  103. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  PubMed  Google Scholar 

  104. Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5:112–120

    Article  CAS  PubMed  Google Scholar 

  105. Bantscheff M, Boesche M, Eberhard D, Matthieson T, Sweetman G, Kuster B (2008) Robust and sensitive iTRAQ quantification on an LTQ Orbitrap mass spectrometer. Mol Cell Proteomics 7:1702–1713

    Article  CAS  PubMed  Google Scholar 

  106. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  CAS  PubMed  Google Scholar 

  107. Kruger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fassler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353–364

    Article  PubMed  CAS  Google Scholar 

  108. Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Rtal-Sanz M, Verrijzer CP, Plasterk RH, Heck AJ (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21:927–931

    Article  CAS  PubMed  Google Scholar 

  109. Old WM, Meyer-Arendt K, Veline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4:1487–1502

    Article  CAS  PubMed  Google Scholar 

  110. Carvalho PC, Hewel J, Barbosa VC, Yates JR III (2008) Identifying differences in protein expression levels by spectral counting and feature selection. Genet Mol Res 7:342–356

    Article  CAS  PubMed  Google Scholar 

  111. Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  PubMed  Google Scholar 

  112. America AH, Cordewener JH (2008) Comparative LC-MS: a landscape of peaks and valleys. Proteomics 8:731–749

    Article  CAS  PubMed  Google Scholar 

  113. Johansson C, Samskog J, Sundstrom L, Wadensten H, Bjorkesten L, Flensburg J (2006) Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics 6:4475–4485

    Article  CAS  PubMed  Google Scholar 

  114. Lill J (2003) Proteomic tools for quantitation by mass spectrometry. Mass Spectrom Rev 22:182–194

    Article  CAS  PubMed  Google Scholar 

  115. Langenfeld E, Meyer HE, Marcus K (2008) Quantitative analysis of highly homologous proteins: the challenge of assaying the “CYP-ome” by mass spectrometry. Anal Bioanal Chem 392:1123–1134

    Article  CAS  PubMed  Google Scholar 

  116. Rivers J, Simpson DM, Robertson DH, Gaskell SJ, Beynon RJ (2007) Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 6:1416–1427

    Article  CAS  PubMed  Google Scholar 

  117. Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics 6:2139–2149

    Article  CAS  PubMed  Google Scholar 

  118. Basch JJ, Farrell HM Jr (1979) Charge separation of proteins complexed with sodium dodecyl sulfate by acid gel electrophoresis in the presence of cetyltrimethylammonium bromide. Biochim Biophys Acta 577:125–131

    CAS  PubMed  Google Scholar 

  119. Akins RE, Tuan RS (1994) Separation of proteins using cetyltrimethylammonium bromide discontinuous gel electrophoresis. Mol Biotechnol 1:211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

FB, PC, CS, BS, and KM are funded by the BMBF (grant 01 GS 08143). CM is supported by the Alma-Vogelsang Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Schoenebeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

May, C., Brosseron, F., Chartowski, P., Schumbrutzki, C., Schoenebeck, B., Marcus, K. (2011). Instruments and Methods in Proteomics. In: Hamacher, M., Eisenacher, M., Stephan, C. (eds) Data Mining in Proteomics. Methods in Molecular Biology, vol 696. Humana Press. https://doi.org/10.1007/978-1-60761-987-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-987-1_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-986-4

  • Online ISBN: 978-1-60761-987-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics