Skip to main content

Detection of West Nile Virus

  • Protocol
  • First Online:
Diagnostic Virology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 665))

Abstract

West Nile virus (WNV; Flavivirus, Flaviviridae) is a spherical enveloped virion containing single-stranded, positive-sense RNA, approximately 11 kb in length. The virus is the most widely distributed flavivirus in the world. Genetic analysis reveals two major lineages of virus, I and II, and several possible newly recognized lineages. Lineage I strains are most commonly associated with outbreaks of neurologic disease, although lineage II virus has led to large epidemics of fever, as in South Africa in 1974. Infection with WNV leads to a wide range of diseases from mildly febrile to severely neurologic, but asymptomatic ­infections occur most frequently. Approximately one in 140 infected individuals develop neurologic ­disease. The virus is maintained in an enzootic cycle, where it is transmitted between ornithophilic mosquitoes of the Culex genus and predominantly passeriform birds. Equines and humans are considered incidental hosts since they do not mount high enough viremia for mosquitoes to become infected ­following feeding. Laboratory diagnosis of WNV infection is predominantly serological, although ­caution is advised because of the high degree of cross-reactivity among flaviviruses. Field specimens, especially mosquitoes and dead birds, collected as part of surveillance programs, are tested for the presence of viral nucleic acid, viral antigen, or infectious virus. Rapid test protocols have been developed in response to the expansion of WNV in the United States. Since WNV is classified as a Biosafety Level-3 (BSL-3) agent by CDC, it is recommended that once this virus is identified in a diagnostic specimen, all infectious virus should be handled in a BSL-3 laboratory in Class II biosafety cabinets by laboratory staff who are trained to work at this level of containment. Assay protocols are described and the necessary equipment and ­supplies listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lanciotti, R.S., Ebel, G.D., Deubel, V., Kerst, A.J., Murri, S., Meyer, R., Bowen, M., McKinney, N., Morrill, W.E., Crabtree, M.B., Kramer, L.D., and Roehrig, J.T. (2002) Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298:96–105.

    Article  PubMed  CAS  Google Scholar 

  2. Bakonyi, T., Hubalek, Z., Rudolf, I., and Nowotny, N. (2005) Novel flavivirus or new lineage of West Nile virus, Central Europe. Emerg Infect Dis 11, 225–231.

    Article  PubMed  CAS  Google Scholar 

  3. Lvov, D.K., Butenko, A.M., Gromashevsky, V.L., Kovtunov, A.I., Prilipov, A.G., Kinney, R., Aristova, V.A., Dzharkenov, A.F., Samokhvalov, E.I., Savage, H.M., Shchelkanov, M.Y., Galkina, I.V., Deryabin, P.G., Gubler, D.J., Kulikova, L.N., Alkhovsky, S.K., Moskvina, T.M., Zlobina, L.V., Sadykova, G.K., Shatalov, A.G., Lvov, D.N., Usachev, V.E., and Voronina, A.G. (2004) West Nile virus and other zoonotic viruses in Russia: examples of emerging–reemerging situations. Arch Virol Suppl 18, 85–96.

    PubMed  Google Scholar 

  4. Bondre, V.P., Jadi, R.S., Mishra, A.C., Yergolkar, P.N., and Arankalle, V.A. (2007) West Nile virus isolates from India: evidence for a distinct genetic lineage. J Gen Virol 88, 875–884.

    Article  PubMed  CAS  Google Scholar 

  5. Hayes, C.G. (1989) West Nile fever. In: Monath, T.P. Ed. The Arboviruses: Epidemiology and Ecology, Vol. 5. CRC, Boca Raton, Florida, pp. 59–88.

    Google Scholar 

  6. Shi, P.Y. and Wong, S.J. (2003) Serologic diagnosis of West Nile virus infection. Expert Rev Mol Diagn 3, 733–741.

    Article  PubMed  CAS  Google Scholar 

  7. Martin, D.A., Biggerstaff, B.J., Allen, B., Johnson, A.J., Lanciotti, R.S., and Roehrig, J.T. (2002) Use of immunoglobulin M cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin Diagn Lab Immunol 9, 544–549.

    PubMed  CAS  Google Scholar 

  8. Martin, D.A., Muth, D.A., Brown, T., Johnson, A.J., Karabatsos, N., and Roehrig, J.T. (2000) Standardization of immunoglobulin M capture enzyme-linked immunosorbent assays for routine diagnosis of arboviral infections. J Clin Microbiol 38, 1823–1826.

    PubMed  CAS  Google Scholar 

  9. Tardei, G., Ruta, S., Chitu, V., Rossi, C., Tsai, T.F., and Cernescu, C. (2000) Evaluation of immunoglobulin M (IgM) and IgG enzyme immunoassays in serologic diagnosis of West Nile virus infection. J Clin Microbiol 38, 2232–2239.

    PubMed  CAS  Google Scholar 

  10. Shi, P.-Y., Kauffman, E.B., Ren, P., Felton, A., Tai, J.H., Dupuis, A.P., II, Jones, S.A., Ngo, K.A., Nicholas, D.C., Maffei, J.G., Ebel, G.D., Bernard, K.A., and Kramer, L.D. (2001) High throughput detection of West Nile virus RNA. J Clin Microbiol 39, 1264–1271.

    Article  PubMed  CAS  Google Scholar 

  11. Lanciotti, R.S., Kerst, A.J., Nasci, R.S., Godsey, M.S., Mitchell, C.J., Savage, H.M., Komar, N., Panella, N.A., Allen, B.C., Volpe, K.E., Davis, B.S., and Roehrig, J.T. (2000) Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38, 4066–4071.

    PubMed  CAS  Google Scholar 

  12. Kauffman, E.B., Jones, S.A., Dupuis, A.P., Ngo, K.A., Bernard, K.A., and Kramer, L.D. (2003) Virus detection protocols for West Nile virus in vertebrate and mosquito specimens. J Clin Microbiol 41, 3661–3667.

    Article  PubMed  Google Scholar 

  13. U.S. Department of Health and Human Services Centers for Disease Control and Prevention and National Institutes of Health (2007) Biosafety in Microbiological and Biomedical Laboratories (BMBL), 5th Edn. Accessed July 8, 2010, at http://www.cdc.gov/biosafety/publications/bmbl5/BMBL.pdf.

  14. Wong, S.J., Demarest, V.L., Boyle, R.H., Wang, T., Ledizet, M., Kar, K., Kramer, L.D., Fikrig, E., and Koski, R.A. (2004) Detection of human anti-flavivirus antibodies with a West Nile virus recombinant antigen microsphere immunoassay. J Clin Microbiol 42, 65–72.

    Article  PubMed  CAS  Google Scholar 

  15. Wong, S.J., Boyle, R.H., Demarest, V.L., Woodmansee, A.N., Kramer, L.D., Li, H., Drebot, M., Koski, R.A., Fikrig, E., Martin, D.A., and Shi, P.Y. (2003) Immunoassay targeting nonstructural protein 5 to differentiate West Nile virus infection from dengue and St. Louis encephalitis virus infections and from flavivirus vaccination. J Clin Microbiol 41, 4217–4223.

    Article  PubMed  CAS  Google Scholar 

  16. Qiagen (2006) RNeasy Mini Handbook, 4th Edn. Accessed July 8, 2010, at www1.qiagen.com/HB/RNeasyMini.

  17. Applied Biosystems (2002) ABI Prism 6100 Nucleic Acid PrepStation User Guide. Accessed July 8, 2010, at http://www3.appliedbiosystems.com/cms/groups/mcb_support/docu­ments/generaldocuments/cms_041216.pdf.

  18. Applied Biosystems (2005) Absolute Quantification Getting Started Guide. Accessed April 15, 2008, at http://www.genomics.bham.ac.uk/Documents/Absolute%20quantification%20guide.pdf.

  19. Monath, T.P., Nystrom, R.R., Bailey, C.L., Calisher, C.H., and Muth, D.J. (1984) Immunoglobulin M antibody capture enzyme-linked immunosorbent assay for diagnosis of St. Louis encephalitis. J Clin Microbiol 20, 784–790.

    PubMed  CAS  Google Scholar 

  20. Prince, H.E., Tobler, L.H., Lape-Nixon, M., Foster, G.A., Stramer, S.L., and Busch, M.P. (2005) Development and persistence of West Nile virus-specific immunoglobulin M (IgM), IgA, and IgG in viremic blood donors. J Clin Microbiol 43, 4316–4320.

    Article  PubMed  CAS  Google Scholar 

  21. Prince, H.E., Tobler, L.H., Yeh, C., Gefter, N., Custer, B., and Busch, M.P. (2007) Persistence of West Nile virus-specific antibodies in viremic blood donors. Clin Vaccine Immunol 14, 1228–1230.

    Article  PubMed  CAS  Google Scholar 

  22. Roehrig, J.T., Nash, D., Maldin, B., Labowitz, A., Martin, D.A., Lanciotti, R.S., and Campbell, G.L. (2003) Persistence of virus-reactive serum immunoglobulin M antibody in confirmed West Nile virus encephalitis cases. Emerg Infect Dis 9, 376–379.

    Article  PubMed  CAS  Google Scholar 

  23. Lindsey, H.S., Calisher, C.H., and Matthews, J.H. (1976) Serum dilution neutralization test for California group virus identification and serology. J Clin Microbiol 4, 503–510.

    PubMed  CAS  Google Scholar 

  24. Calisher, C.H., Monath, T.P., Karabatsos, N., and Trent, D.W. (1981) Arbovirus subtyping: applications to epidemiologic studies, availability of reagents, and testing services. Am J Epidemiol 114, 619–631.

    PubMed  CAS  Google Scholar 

  25. Ebel, G.D., Dupuis, A.P., Nicholas, D., Young, D., Maffei, J., and Kramer, L.D. (2002) Detection by enzyme-linked immunosorbent assay of antibodies to West Nile virus in birds. Emerg Infect Dis 8, 979–982.

    Article  PubMed  CAS  Google Scholar 

  26. Chiles, R.E. and Reisen, W.K. (1998) A new enzyme immunoassay to detect antibodies to arboviruses in the blood of wild birds. J Vector Ecol 23, 123–135.

    PubMed  CAS  Google Scholar 

  27. Nasci, R.S., Gottfried, K.L., Burkhalter, K.L., Kulasekera, V.L., Lambert, A.J., Lanciotti, R.S., Hunt, A.R., and Ryan, J.R. (2002) Comparison of vero cell plaque assay, TaqMan reverse transcriptase polymerase chain reaction RNA assay, and VecTest antigen assay for detection of West Nile virus in field-collected mosquitoes. J Am Mosq Control Assoc 18, 294–300.

    PubMed  CAS  Google Scholar 

  28. Sutherland, G.L. and Nasci, R.S. (2007) Detection of West Nile virus in large pools of mosquitoes. J Am Mosq Control Assoc 23, 389–395.

    Article  PubMed  Google Scholar 

  29. Stone, W.B., Therrien, J.E., Benson, R., Kramer, L., Kauffman, E.B., Eidson, M., and Campbell, S. (2005) Assays to detect West Nile virus in dead birds. Emerg Infect Dis 11, 1770–1773.

    Article  PubMed  Google Scholar 

  30. Padgett, K.A., Cahoon-Young, B., Carney, R., Woods, L., Read, D., Husted, S., and Kramer, V. (2006) Field and laboratory evaluation of diagnostic assays for detecting West Nile virus in oropharyngeal swabs from California wild birds. Vector Borne Zoonotic Dis 6, 183–191.

    Article  PubMed  Google Scholar 

  31. Briese, T., Glass, W.G., and Lipkin, I. (2000) Detection of West Nile virus sequences in cerebrospinal fluid. Lancet 355, 1614–1615.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kauffman, E.B., Franke, M.A., Wong, S.J., Kramer, L.D. (2010). Detection of West Nile Virus. In: Stephenson, J., Warnes, A. (eds) Diagnostic Virology Protocols. Methods in Molecular Biology, vol 665. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-817-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-817-1_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-816-4

  • Online ISBN: 978-1-60761-817-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics