Skip to main content

West Nile Virus

  • Chapter
  • First Online:
Neglected Tropical Diseases - North America

Abstract

Since its introduction to North America in 1999, West Nile virus (WNV) has established itself as an endemic pathogen with regular seasonal outbreaks. The single-stranded RNA flavivirus is primarily transmitted by mosquitoes in the genus Culex and maintained in an enzootic transmission cycle by a diverse assemblage of avian hosts. Humans, equines, and other mammals serve as incidental or dead-end hosts. WNV is a significant threat to public health, with estimates indicating that more than seven million individuals have been infected. Although the majority of these individuals are asymptomatic, approximately 20% develop a febrile illness or neuroinvasive disease, the latter associated with high rates of mortality in the elderly and immunocompromised. Disease-associated pathology of the central nervous system is prevalent not only during the acute phase of WNV infection but also as significant long-term sequelae. Although vaccine and therapeutic research progressed over the last 20 years, no agents are licensed for use in humans, and treatment depends on supportive care. Mitigation efforts are instead directed towards the elimination and control of mosquito vectors. Future research will need to leverage technological and epidemiological advances to overcome a host of challenges in order to alleviate the immense economic and human costs of this endemic zoonotic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klenk K et al (2004) Alligators as West Nile virus amplifiers. Emerg Infect Dis 10(12):2150–2155

    Article  PubMed  PubMed Central  Google Scholar 

  2. Colpitts TM et al (2012) West Nile virus: biology, transmission, and human infection. Clin Microbiol Rev 25(4):635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fall G et al (2017) Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negl Trop Dis 11(11):e0006078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Phalen DN, Dahlhausen B (2004) West Nile Virus. Seminars in avian and exotic pet medicine. Emerg Dis 13(2):67–78

    Google Scholar 

  5. Escribano-Romero E et al (2015) West Nile virus serosurveillance in pigs, wild boars, and roe deer in Serbia. Vet Microbiol 176(3–4):365–369

    Article  PubMed  Google Scholar 

  6. Campbell A, Dreher HM (2002) A new transcontinental disease: the West Nile virus. Medsurg Nurs 11(3):112–119; quiz 120

    PubMed  Google Scholar 

  7. Marra PP, Griffing SM, McLean RG (2003) West Nile virus and wildlife health. Emerg Infect Dis 9(7):898–899

    Article  PubMed  PubMed Central  Google Scholar 

  8. Root JJ et al (2005) Serologic evidence of exposure of wild mammals to flaviviruses in the central and eastern United States. Am J Trop Med Hyg 72(5):622–630

    Article  PubMed  Google Scholar 

  9. Root JJ, Bosco-Lauth AM (2019) West Nile virus associations in wild mammals: an update. Viruses 11(5):459

    Article  CAS  PubMed Central  Google Scholar 

  10. Shi PY, Li W, Brinton MA (1996) Cell proteins bind specifically to West Nile virus minus-strand 3′ stem-loop RNA. J Virol 70(9):6278–6287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lindenbach BD, Murray CL, Heinz-Jürgen T, Rice CM (2013) Flaviviridae. In: Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 712–746

    Google Scholar 

  12. Hayes EB et al (2005) Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 11(8):1167–1173

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martin-Acebes MA, Saiz JC (2012) West Nile virus: a re-emerging pathogen revisited. World J Virol 1(2):51–70

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59:23–61

    Article  CAS  PubMed  Google Scholar 

  15. Chen LK et al (1996) Persistence of Japanese encephalitis virus is associated with abnormal expression of the nonstructural protein NS1 in host cells. Virology 217(1):220–229

    Article  CAS  PubMed  Google Scholar 

  16. Firth AE, Atkins JF (2009) A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1’ may derive from ribosomal frameshifting. Virol J 6:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Firth AE et al (2010) Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology 399(1):153–166

    Article  CAS  PubMed  Google Scholar 

  18. Melian EB et al (2010) NS1’ of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol 84(3):1641–1647

    Article  CAS  PubMed  Google Scholar 

  19. Leung JY et al (2008) Role of nonstructural protein NS2A in flavivirus assembly. J Virol 82(10):4731–4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu WJ et al (2006) A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol 80(5):2396–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ye Q et al (2012) A single nucleotide mutation in NS2A of Japanese encephalitis-live vaccine virus (SA14-14-2) ablates NS1’ formation and contributes to attenuation. J Gen Virol 93(Pt 9):1959–1964

    Article  CAS  PubMed  Google Scholar 

  22. Evans JD, Seeger C (2007) Differential effects of mutations in NS4B on West Nile virus replication and inhibition of interferon signaling. J Virol 81(21):11809–11816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Munoz-Jordan JL et al (2005) Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79(13):8004–8013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Munoz-Jordan JL et al (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 100(24):14333–14338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller S et al (2007) The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. J Biol Chem 282(12):8873–8882

    Article  CAS  PubMed  Google Scholar 

  26. Kaufusi PH et al (2014) Induction of endoplasmic reticulum-derived replication-competent membrane structures by West Nile virus non-structural protein 4B. PLoS One 9(1):e84040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ambrose RL, Mackenzie JM (2011) West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion. J Virol 85(6):2723–2732

    Article  CAS  PubMed  Google Scholar 

  28. Chappell KJ et al (2008) Mutagenesis of the West Nile virus NS2B cofactor domain reveals two regions essential for protease activity. J Gen Virol 89(Pt 4):1010–1014

    Article  CAS  PubMed  Google Scholar 

  29. Bazan JF, Fletterick RJ (1989) Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology 171(2):637–639

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y et al (2007) Structure and function of flavivirus NS5 methyltransferase. J Virol 81(8):3891–3903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ray D et al (2006) West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2’-O methylations by nonstructural protein 5. J Virol 80(17):8362–8370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Issur M et al (2009) The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15(12):2340–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ackermann M, Padmanabhan R (2001) De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276(43):39926–39937

    Article  CAS  PubMed  Google Scholar 

  34. Guyatt KJ, Westaway EG, Khromykh AA (2001) Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods 92(1):37–44

    Article  CAS  PubMed  Google Scholar 

  35. Laurent-Rolle M et al (2010) The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol 84(7):3503–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davis CT et al (2005) Phylogenetic analysis of North American West Nile virus isolates, 2001-2004: evidence for the emergence of a dominant genotype. Virology 342(2):252–265

    Article  CAS  PubMed  Google Scholar 

  37. Davis CT et al (2007) Genetic stasis of dominant West Nile virus genotype, Houston, Texas. Emerg Infect Dis 13(4):601–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. May FJ et al (2011) Phylogeography of West Nile virus: from the cradle of evolution in Africa to Eurasia, Australia, and the Americas. J Virol 85(6):2964–2974

    Article  CAS  PubMed  Google Scholar 

  39. McMullen AR et al (2011) Evolution of new genotype of West Nile virus in North America. Emerg Infect Dis 17(5):785–793

    Article  PubMed  PubMed Central  Google Scholar 

  40. Di Giallonardo F et al (2016) Fluid spatial dynamics of West Nile virus in the United States: rapid spread in a permissive host environment. J Virol 90(2):862–872

    Article  PubMed  CAS  Google Scholar 

  41. Mann BR et al (2013) Continued evolution of West Nile virus, Houston, Texas, USA, 2002-2012. Emerg Infect Dis 19(9):1418–1427

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sejvar JJ (2003) West nile virus: an historical overview. Ochsner J 5(3):6–10

    PubMed  PubMed Central  Google Scholar 

  43. CDC (6 July 2020) Outbreak of West Nile-Like Viral Encephalitis -- New York, 1999

    Google Scholar 

  44. Nash D et al (2001) The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344(24):1807–1814

    Article  CAS  PubMed  Google Scholar 

  45. Johnston BL, Conly JM (2000) West Nile virus - where did it come from and where might it go? Can J Infect Dis 11(4):175–178

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kilpatrick AM, LaDeau SL, Marra PP (2007) Ecology of West Nile virus transmission and its impact on birds in the western hemisphere. Auk 124(4):1121–1136

    Article  Google Scholar 

  47. Giordano BV, Kaur S, Hunter FF (2017) West Nile virus in Ontario, Canada: a twelve-year analysis of human case prevalence, mosquito surveillance, and climate data. PLoS One 12(8):e0183568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Canada, P.H.A.o (2015) Surveillance of West Nile Virus. Education and awareness 2015 June 26

    Google Scholar 

  49. Hahn MB et al (2015) Meteorological conditions associated with increased incidence of West Nile virus disease in the United States, 2004-2012. Am J Trop Med Hyg 92(5):1013–1022

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cruz-Pacheco G, Esteva L, Vargas C (2009) Seasonality and outbreaks in West Nile virus infection. Bull Math Biol 71(6):1378–1393

    Article  PubMed  Google Scholar 

  51. Trock SC et al (2001) West Nile virus outbreak among horses in New York state, 1999 and 2000. Emerg Infect Dis 7(4):745–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Root JJ et al (2007) Fox squirrel (Sciurus niger) associations with West Nile virus. Am J Trop Med Hyg 76(4):782–784

    Article  PubMed  Google Scholar 

  53. Kramer LD, Bernard KA (2001) West Nile virus infection in birds and mammals. Ann N Y Acad Sci 951:84–93

    Article  CAS  PubMed  Google Scholar 

  54. Buckweitz S et al (2003) Serological, reverse transcriptase-polymerase chain reaction, and immunohistochemical detection of West Nile virus in a clinically affected dog. J Vet Diagn Investig 15(4):324–329

    Article  Google Scholar 

  55. Kiupel M et al (2003) West Nile virus infection in Eastern fox squirrels (Sciurus niger). Vet Pathol 40(6):703–707

    Article  CAS  PubMed  Google Scholar 

  56. Lichtensteiger CA et al (2003) West Nile virus encephalitis and myocarditis in wolf and dog. Emerg Infect Dis 9(10):1303–1306

    Article  PubMed  PubMed Central  Google Scholar 

  57. Miller DL et al (2003) West Nile virus in farmed alligators. Emerg Infect Dis 9(7):794–799

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tyler JW et al (2003) West Nile virus encephalomyelitis in a sheep. J Vet Intern Med 17(2):242–244

    Article  PubMed  Google Scholar 

  59. Heinz-Taheny KM et al (2004) West Nile virus infection in free-ranging squirrels in Illinois. J Vet Diagn Investig 16(3):186–190

    Article  Google Scholar 

  60. Lanthier I et al (2004) Natural West Nile virus infection in a captive juvenile Arctic wolf (Canis lupus). J Vet Diagn Investig 16(4):326–329

    Article  Google Scholar 

  61. Yaeger M et al (2004) West Nile virus meningoencephalitis in a Suri alpaca and Suffolk ewe. J Vet Diagn Investig 16(1):64–66

    Article  Google Scholar 

  62. Kile JC et al (2005) Serologic survey of cats and dogs during an epidemic of West Nile virus infection in humans. J Am Vet Med Assoc 226(8):1349–1353

    Article  PubMed  Google Scholar 

  63. Cannon AB et al (2006) Acute encephalitis, polyarthritis, and myocarditis associated with West Nile virus infection in a dog. J Vet Intern Med 20(5):1219–1223

    Article  PubMed  Google Scholar 

  64. Bentler KT et al (2007) Serologic evidence of West Nile virus exposure in north American mesopredators. Am J Trop Med Hyg 76(1):173–179

    Article  PubMed  Google Scholar 

  65. Gomez A et al (2008) Land use and west nile virus seroprevalence in wild mammals. Emerg Infect Dis 14(6):962–965

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ratterree MS et al (2003) West Nile virus infection in nonhuman primate breeding colony, concurrent with human epidemic, southern Louisiana. Emerg Infect Dis 9(11):1388–1394

    Article  PubMed  Google Scholar 

  67. Steinman A et al (2003) West Nile virus infection in crocodiles. Emerg Infect Dis 9(7):887–889

    Article  PubMed  PubMed Central  Google Scholar 

  68. Dahlin CR et al (2016) Wild snakes harbor West Nile virus. One Health 2:136–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Komar N (2000) West Nile viral encephalitis. Rev Sci Tech 19(1):166–176

    Article  CAS  PubMed  Google Scholar 

  70. Bunning ML et al (2002) Experimental infection of horses with West Nile virus. Emerg Infect Dis 8(4):380–386

    Article  PubMed  PubMed Central  Google Scholar 

  71. Austgen LE et al (2004) Experimental infection of cats and dogs with West Nile virus. Emerg Infect Dis 10(1):82–86

    Article  PubMed  PubMed Central  Google Scholar 

  72. Resnick MP et al (2008) Juvenile dogs as potential sentinels for West Nile virus surveillance. Zoonoses Public Health 55(8–10):443–447

    CAS  PubMed  Google Scholar 

  73. Currenti L et al (2020) Serological survey for Saint Louis encephalitis virus and West Nile virus in domestic mammals in Cordoba, Argentina: are our pets potential sentinels? Arch Virol 165(9):2079–2082

    Article  CAS  PubMed  Google Scholar 

  74. CDC (2020) West Nile State maps

    Google Scholar 

  75. Canada, H (2020) West Nile virus surveillance

    Google Scholar 

  76. Carson PJ et al (2012) Neuroinvasive disease and West Nile virus infection, North Dakota, USA, 1999-2008. Emerg Infect Dis 18(4):684–686

    Article  PubMed  PubMed Central  Google Scholar 

  77. Petersen LR et al (2013) Estimated cumulative incidence of West Nile virus infection in US adults, 1999-2010. Epidemiol Infect 141(3):591–595

    Article  CAS  PubMed  Google Scholar 

  78. Ronca SE, Murray KO, Nolan MS (2019) Cumulative incidence of West Nile virus infection, continental United States, 1999-2016. Emerg Infect Dis 25(2):325–327

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rocheleau JP et al (2017) Characterizing environmental risk factors for West Nile virus in Quebec, Canada, using clinical data in humans and serology in pet dogs. Epidemiol Infect 145(13):2797–2807

    Article  CAS  PubMed  Google Scholar 

  80. Vanichanan J et al (2016) Use of testing for West Nile virus and other arboviruses. Emerg Infect Dis 22(9):1587–1593

    Article  PubMed Central  Google Scholar 

  81. Weber IB et al (2012) Completeness of West Nile virus testing in patients with meningitis and encephalitis during an outbreak in Arizona, USA. Epidemiol Infect 140(9):1632–1636

    Article  CAS  PubMed  Google Scholar 

  82. Staples JE et al (2014) Initial and long-term costs of patients hospitalized with West Nile virus disease. Am J Trop Med Hyg 90(3):402–409

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zohrabian A, Hayes EB, Petersen LR (2006) Cost-effectiveness of West Nile virus vaccination. Emerg Infect Dis 12(3):375–380

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shankar MB et al (2017) Cost effectiveness of a targeted age-based West Nile virus vaccination program. Vaccine 35(23):3143–3151

    Article  PubMed  Google Scholar 

  85. Turell MJ et al (2005) An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42(1):57–62

    Article  PubMed  Google Scholar 

  86. Goddard LB et al (2002) Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 8(12):1385–1391

    Article  PubMed  PubMed Central  Google Scholar 

  87. Crockett RK et al (2012) Culex flavivirus and West Nile virus in Culex quinquefasciatus populations in the southeastern United States. J Med Entomol 49(1):165–174

    Article  PubMed  Google Scholar 

  88. Komar N et al (2001) Serologic evidence for West Nile virus infection in birds in the new York City vicinity during an outbreak in 1999. Emerg Infect Dis 7(4):621–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Komar N (2003) West Nile virus: epidemiology and ecology in North America. Adv Virus Res 61:185–234

    Article  PubMed  Google Scholar 

  90. Kilpatrick AM, Pape WJ (2013) Predicting human West Nile virus infections with mosquito surveillance data. Am J Epidemiol 178(5):829–835

    Article  PubMed  PubMed Central  Google Scholar 

  91. Canada, P.H.A.o (2019) West Nile Virus Ontario 2017. Education and awareness 2019 May 29

    Google Scholar 

  92. Kilpatrick AM et al (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4(4):e82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Banet-Noach C, Simanov L, Malkinson M (2003) Direct (non-vector) transmission of West Nile virus in geese. Avian Pathol 32(5):489–494

    Article  PubMed  Google Scholar 

  94. Steele KE et al (2000) Pathology of fatal West Nile virus infections in native and exotic birds during the 1999 outbreak in New York City, New York. Vet Pathol 37(3):208–224

    Article  CAS  PubMed  Google Scholar 

  95. Swayne DE et al (2001) Fatal encephalitis and myocarditis in young domestic geese (Anser anser domesticus) caused by West Nile virus. Emerg Infect Dis 7(4):751–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fitzgerald SD et al (2003) Clinical and pathologic features of West Nile virus infection in native North American owls (Family strigidae). Avian Dis 47(3):602–610

    Article  CAS  PubMed  Google Scholar 

  97. Komar N et al (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9(3):311–322

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nemeth N et al (2007) Surveillance for West Nile virus in clinic-admitted raptors, Colorado. Emerg Infect Dis 13(2):305–307

    Article  PubMed  PubMed Central  Google Scholar 

  99. Swetnam D et al (2018) Terrestrial bird migration and West Nile virus circulation, United States. Emerg Infect Dis 24(12):2184–2194

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pisani G et al (2016) West Nile virus in Europe and safety of blood transfusion. Transfus Med Hemother 43(3):158–167

    Article  PubMed  PubMed Central  Google Scholar 

  101. CDC (2002) Update: investigations of West Nile virus infections in recipients of organ transplantation and blood transfusion--Michigan. MMWR Morb Mortal Wkly Rep 51(39):879

    Google Scholar 

  102. Sampathkumar P (2003) West Nile virus: epidemiology, clinical presentation, diagnosis, and prevention. Mayo Clin Proc 78(9):1137–1144

    Article  PubMed  Google Scholar 

  103. Deubel V et al (2001) Variations in biological features of West Nile viruses. Ann N Y Acad Sci 951:195–206

    Article  CAS  PubMed  Google Scholar 

  104. Lim PY et al (2011) Keratinocytes are cell targets of West Nile virus in vivo. J Virol 85(10):5197–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Suthar MS, Diamond MS, Gale M Jr (2013) West Nile virus infection and immunity. Nat Rev Microbiol 11(2):115–128

    Article  CAS  PubMed  Google Scholar 

  106. Pingen M et al (2017) Mosquito biting modulates skin response to virus infection. Trends Parasitol 33(8):645–657

    Article  PubMed  Google Scholar 

  107. Monath TP, Cropp CB, Harrison AK (1983) Mode of entry of a neurotropic arbovirus into the central nervous system. Reinvestigation of an old controversy. Lab Investig 48(4):399–410

    CAS  PubMed  Google Scholar 

  108. Liou ML, Hsu CY (1998) Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain. Cell Tissue Res 293(3):389–394

    Article  CAS  PubMed  Google Scholar 

  109. Matthews V et al (2000) Morphological features of Murray Valley encephalitis virus infection in the central nervous system of Swiss mice. Int J Exp Pathol 81(1):31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Diamond MS, Klein RS (2004) West Nile virus: crossing the blood-brain barrier. Nat Med 10(12):1294–1295

    Article  CAS  PubMed  Google Scholar 

  111. German AC et al (2006) A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans R Soc Trop Med Hyg 100(12):1135–1145

    Article  PubMed  Google Scholar 

  112. Hunsperger EA, Roehrig JT (2006) Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J Neurovirol 12(2):129–139

    Article  PubMed  CAS  Google Scholar 

  113. Samuel MA et al (2007) Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci U S A 104(43):17140–17145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sejvar JJ (2016) West Nile virus infection. Microbiol Spectr 4(3)

    Google Scholar 

  115. Agamanolis DP et al (2003) Neuropathological findings in West Nile virus encephalitis: a case report. Ann Neurol 54(4):547–551

    Article  PubMed  Google Scholar 

  116. Kelley TW et al (2003) The neuropathology of West Nile virus meningoencephalitis. A report of two cases and review of the literature. Am J Clin Pathol 119(5):749–753

    Article  PubMed  Google Scholar 

  117. Leis AA et al (2003) West Nile poliomyelitis. Lancet Infect Dis 3(1):9–10

    Article  PubMed  Google Scholar 

  118. Bouffard JP et al (2004) Neuropathology of the brain and spinal cord in human West Nile virus infection. Clin Neuropathol 23(2):59–61

    CAS  PubMed  Google Scholar 

  119. Fratkin JD et al (2004) Spinal cord neuropathology in human West Nile virus infection. Arch Pathol Lab Med 128(5):533–537

    Article  PubMed  Google Scholar 

  120. Guarner J et al (2004) Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis. Hum Pathol 35(8):983–990

    Article  PubMed  Google Scholar 

  121. Schafernak KT, Bigio EH (2006) West Nile virus encephalomyelitis with polio-like paralysis & nigral degeneration. Can J Neurol Sci 33(4):407–410

    Article  PubMed  Google Scholar 

  122. Sampson BA et al (2000) The pathology of human West Nile virus infection. Hum Pathol 31(5):527–531

    Article  CAS  PubMed  Google Scholar 

  123. Shieh WJ et al (2000) The role of pathology in an investigation of an outbreak of West Nile encephalitis in New York, 1999. Emerg Infect Dis 6(4):370–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Park M, Hui JS, Bartt RE (2003) Acute anterior radiculitis associated with West Nile virus infection. J Neurol Neurosurg Psychiatry 74(6):823–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Murray KO et al (2018) The neurocognitive and MRI outcomes of West Nile virus infection: preliminary analysis using an external control group. Front Neurol 9:111

    Article  PubMed  PubMed Central  Google Scholar 

  126. Huang C et al (2002) First isolation of West Nile virus from a patient with encephalitis in the United States. Emerg Infect Dis 8(12):1367–1371

    Article  PubMed  PubMed Central  Google Scholar 

  127. Paddock CD et al (2006) Fatal hemorrhagic fever caused by West Nile virus in the United States. Clin Infect Dis 42(11):1527–1535

    Article  PubMed  Google Scholar 

  128. Brener ZZ et al (2007) Acute renal failure in a patient with West Nile viral encephalitis. Nephrol Dial Transplant 22(2):662–663

    Article  PubMed  Google Scholar 

  129. Murray KO et al (2017) Visualization of West Nile virus in urine sediment using electron microscopy and immunogold up to nine years postinfection. Am J Trop Med Hyg 97(6):1913–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Murray K et al (2010) Persistent infection with West Nile virus years after initial infection. J Infect Dis 201(1):2–4

    Article  CAS  PubMed  Google Scholar 

  131. Ergunay K et al (2015) Prospective investigation of the impact of West Nile virus infections in renal diseases. J Med Virol 87(10):1625–1632

    Article  PubMed  Google Scholar 

  132. Nolan MS et al (2012) Prevalence of chronic kidney disease and progression of disease over time among patients enrolled in the Houston West Nile virus cohort. PLoS One 7(7):e40374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Philpott DCE et al (2019) Acute and delayed deaths after West Nile virus infection, Texas, USA, 2002-2012. Emerg Infect Dis 25(2):256–264

    Article  PubMed Central  Google Scholar 

  134. Saxena V et al (2013) A hamster-derived West Nile virus isolate induces persistent renal infection in mice. PLoS Negl Trop Dis 7(6):e2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tesh RB et al (2005) Persistent West Nile virus infection in the golden hamster: studies on its mechanism and possible implications for other flavivirus infections. J Infect Dis 192(2):287–295

    Article  PubMed  Google Scholar 

  136. Albagali C, Chaimoff R (1959) A case of West Nile myocarditis. Harefuah 57:274–276

    CAS  PubMed  Google Scholar 

  137. Perelman A, Stern J (1974) Acute pancreatitis in West Nile fever. Am J Trop Med Hyg 23(6):1150–1152

    Article  CAS  PubMed  Google Scholar 

  138. Smith RD et al (2004) West Nile virus encephalitis with myositis and orchitis. Hum Pathol 35(2):254–258

    Article  PubMed  Google Scholar 

  139. Pergam SA et al (2006) Myocarditis in West Nile virus infection. Am J Trop Med Hyg 75(6):1232–1233

    Article  PubMed  Google Scholar 

  140. Kushawaha A, Jadonath S, Mobarakai N (2009) West nile virus myocarditis causing a fatal arrhythmia: a case report. Cases J 2:7147

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sampson BA et al (2003) Muscle weakness in West Nile encephalitis is due to destruction of motor neurons. Hum Pathol 34(6):628–629

    Article  PubMed  Google Scholar 

  142. Brilla R et al (2004) Clinical and neuroradiologic features of 39 consecutive cases of West Nile virus meningoencephalitis. J Neurol Sci 220(1–2):37–40

    Article  PubMed  Google Scholar 

  143. Ferguson DD et al (2005) Characteristics of the rash associated with West Nile virus fever. Clin Infect Dis 41(8):1204–1207

    Article  PubMed  Google Scholar 

  144. Krow-Lucal E et al (2017) West Nile virus and other nationally notifiable Arboviral diseases - United States, 2015. MMWR Morb Mortal Wkly Rep 66(2):51–55

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sejvar JJ et al (2003) Neurologic manifestations and outcome of West Nile virus infection. JAMA 290(4):511–515

    Article  PubMed  Google Scholar 

  146. Sejvar JJ et al (2003) Acute flaccid paralysis and West Nile virus infection. Emerg Infect Dis 9(7):788–793

    Article  PubMed  PubMed Central  Google Scholar 

  147. Khairallah M et al (2004) Chorioretinal involvement in patients with West Nile virus infection. Ophthalmology 111(11):2065–2070

    Article  PubMed  Google Scholar 

  148. Debiasi RL, Tyler KL (2006) West Nile virus meningoencephalitis. Nat Clin Pract Neurol 2(5):264–275

    Article  PubMed  PubMed Central  Google Scholar 

  149. Long D et al (2016) Identification of genetic variants associated with susceptibility to West Nile virus neuroinvasive disease. Genes Immun 17(5):298–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bigham AW et al (2011) Host genetic risk factors for West Nile virus infection and disease progression. PLoS One 6(9):e24745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yakub I et al (2005) Single nucleotide polymorphisms in genes for 2′-5′-oligoadenylate synthetase and RNase L inpatients hospitalized with West Nile virus infection. J Infect Dis 192(10):1741–1748

    Article  CAS  PubMed  Google Scholar 

  152. Yeung MW et al (2017) Epidemiologic and clinical parameters of West Nile virus infections in humans: a scoping review. BMC Infect Dis 17(1):609

    Article  PubMed  PubMed Central  Google Scholar 

  153. Murray KO et al (2014) Survival analysis, long-term outcomes, and percentage of recovery up to 8 years post-infection among the Houston West Nile virus cohort. PLoS One 9(7):e102953

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ronca SE, Dineley KT, Paessler S (2016) Neurological sequelae resulting from encephalitic alphavirus infection. Front Microbiol 7:959

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bode AV et al (2006) West Nile virus disease: a descriptive study of 228 patients hospitalized in a 4-county region of Colorado in 2003. Clin Infect Dis 42(9):1234–1240

    Article  PubMed  Google Scholar 

  156. Weiss D et al (2001) Clinical findings of West Nile virus infection in hospitalized patients, New York and New Jersey, 2000. Emerg Infect Dis 7(4):654–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Crichlow R, Bailey J, Gardner C (2004) Cerebrospinal fluid neutrophilic pleocytosis in hospitalized West Nile virus patients. J Am Board Fam Pract 17(6):470–472

    Article  PubMed  Google Scholar 

  158. Lindsey NP et al (2012) Delayed mortality in a cohort of persons hospitalized with West Nile virus disease in Colorado in 2003. Vector Borne Zoonotic Dis 12(3):230–235

    Article  PubMed  Google Scholar 

  159. Cao NJ et al (2005) Recovery and prognosticators of paralysis in West Nile virus infection. J Neurol Sci 236(1–2):73–80

    Article  PubMed  Google Scholar 

  160. Sejvar JJ et al (2005) West Nile virus-associated flaccid paralysis. Emerg Infect Dis 11(7):1021–1027

    Article  PubMed  PubMed Central  Google Scholar 

  161. Sejvar JJ et al (2006) West Nile virus-associated flaccid paralysis outcome. Emerg Infect Dis 12(3):514–516

    Article  PubMed  PubMed Central  Google Scholar 

  162. Athar P et al (2018) Long-term neuromuscular outcomes of west nile virus infection: a clinical and electromyographic evaluation of patients with a history of infection. Muscle Nerve 57(1):77–82

    Article  PubMed  Google Scholar 

  163. Weatherhead JE et al (2015) Long-term neurological outcomes in West Nile virus-infected patients: an observational study. Am J Trop Med Hyg 92(5):1006–1012

    Article  PubMed  PubMed Central  Google Scholar 

  164. Berg PJ, Smallfield S, Svien L (2010) An investigation of depression and fatigue post West Nile virus infection. S D Med 63(4):127–129. 131-3

    PubMed  Google Scholar 

  165. Sejvar JJ et al (2010) Delayed-onset and recurrent limb weakness associated with West Nile virus infection. J Neurovirol 16(1):93–100

    Article  PubMed  Google Scholar 

  166. Anninger W, Lubow M (2004) Visual loss with West Nile virus infection: a wider spectrum of a “new” disease. Clin Infect Dis 38(7):e55–e56

    Article  PubMed  Google Scholar 

  167. Chan CK et al (2006) Ocular features of west nile virus infection in North America: a study of 14 eyes. Ophthalmology 113(9):1539–1546

    Article  PubMed  Google Scholar 

  168. Khairallah M et al (2006) Severe ischemic maculopathy in a patient with West Nile virus infection. Ophthalmic Surg Lasers Imaging 37(3):240–242

    Article  PubMed  Google Scholar 

  169. Khairallah M et al (2006) Indocyanine green angiographic features in multifocal chorioretinitis associated with West Nile virus infection. Retina 26(3):358–359

    Article  PubMed  Google Scholar 

  170. Khairallah M et al (2007) Linear pattern of West Nile virus-associated chorioretinitis is related to retinal nerve fibres organization. Eye (Lond) 21(7):952–955

    Article  CAS  Google Scholar 

  171. Khairallah M et al (2007) A prospective evaluation of factors associated with chorioretinitis in patients with West Nile virus infection. Ocul Immunol Inflamm 15(6):435–439

    Article  PubMed  Google Scholar 

  172. Shukla J et al (2012) Molecular detection and characterization of West Nile virus associated with multifocal retinitis in patients from southern India. Int J Infect Dis 16(1):e53–e59

    Article  PubMed  Google Scholar 

  173. Sivakumar RR et al (2013) Molecular diagnosis and ocular imaging of West Nile virus retinitis and neuroretinitis. Ophthalmology 120(9):1820–1826

    Article  PubMed  Google Scholar 

  174. Hasbun R et al (2016) West Nile virus retinopathy and associations with long term neurological and neurocognitive sequelae. PLoS One 11(3):e0148898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Khairallah M, Yahia SB, Kahloun R (2016) West Nile Virus. In: Intraocular inflammation. Springer, Berlin

    Google Scholar 

  176. Murray KO et al (2009) Risk factors for encephalitis from West Nile virus: a matched case-control study using hospitalized controls. Zoonoses Public Health 56(6–7):370–375

    Article  CAS  PubMed  Google Scholar 

  177. Hansen (2018) in ASTMH

    Google Scholar 

  178. Pradhan S, Anand S, Choudhury SS (2019) Cognitive behavioural impairment with irreversible sensorineural deafness as a complication of West Nile encephalitis. J Neurovirol 25(3):429–433

    Article  PubMed  Google Scholar 

  179. Pepperell C et al (2003) West Nile virus infection in 2002: morbidity and mortality among patients admitted to hospital in southcentral Ontario. CMAJ 168(11):1399–1405

    PubMed  PubMed Central  Google Scholar 

  180. Nolan MS, Schuermann J, Murray KO (2013) West Nile virus infection among humans, Texas, USA, 2002–2011. Emerg Infect Dis 19(1):137–139

    Article  PubMed  PubMed Central  Google Scholar 

  181. Bai F et al (2019) Current understanding of West Nile virus clinical manifestations, immune responses, neuroinvasion, and immunotherapeutic implications. Pathogens 8(4):193

    Article  CAS  PubMed Central  Google Scholar 

  182. Georges AJ, Lesbordes LJ, Georges-Courbot MC, Meunier DMY, Gonzalez JP (1987) Fatal hepatitis from West Nile virus. Annales de l’Institut Pasteur Virol 138(2):237–244

    Article  Google Scholar 

  183. Wang H et al (2011) Autonomic nervous dysfunction in hamsters infected with West Nile virus. PLoS One 6(5):e19575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lustig Y et al (2018) Surveillance and diagnosis of West Nile virus in the face of Flavivirus cross-reactivity. Front Microbiol 9:2421

    Article  PubMed  PubMed Central  Google Scholar 

  185. CDC (2015) Arboviral diseases case definition

    Google Scholar 

  186. Canada, H (2020) West Nile virus National Case definition

    Google Scholar 

  187. Martin DA et al (2002) Use of immunoglobulin m cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin Diagn Lab Immunol 9(3):544–549

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Balmaseda A et al (2017) Antibody-based assay discriminates Zika virus infection from other flaviviruses. Proc Natl Acad Sci U S A 114(31):8384–8389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Murray KO et al (2013) Persistence of detectable immunoglobulin M antibodies up to 8 years after infection with West Nile virus. Am J Trop Med Hyg 89(5):996–1000

    Article  PubMed  PubMed Central  Google Scholar 

  190. Gorchakov R et al (2019) Optimizing PCR detection of West Nile virus from body fluid specimens to delineate natural history in an infected human cohort. Int J Mol Sci 20(8):1934

    Article  CAS  PubMed Central  Google Scholar 

  191. Chaintoutis SC et al (2019) A PCR-based NGS protocol for whole genome sequencing of West Nile virus lineage 2 directly from biological specimens. Mol Cell Probes 46:101412

    Article  CAS  PubMed  Google Scholar 

  192. Williams SH et al (2018) Investigation of the plasma virome from cases of unexplained febrile illness in Tanzania from 2013 to 2014: a comparative analysis between unbiased and VirCapSeq-VERT High-throughput sequencing approaches. mSphere 3(4):e00311–e00318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sinigaglia A et al (2020) New avenues for therapeutic discovery against West Nile virus. Expert Opin Drug Discov 15(3):333–348

    Article  CAS  PubMed  Google Scholar 

  194. Chowers MY et al (2001) Clinical characteristics of the West Nile fever outbreak, Israel, 2000. Emerg Infect Dis 7(4):675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Anderson JF, Rahal JJ (2002) Efficacy of interferon alpha-2b and ribavirin against West Nile virus in vitro. Emerg Infect Dis 8(1):107–108

    Article  PubMed  PubMed Central  Google Scholar 

  196. Morrey JD et al (2004) Effect of interferon-alpha and interferon-inducers on West Nile virus in mouse and hamster animal models. Antivir Chem Chemother 15(2):101–109

    Article  CAS  PubMed  Google Scholar 

  197. Sayao AL et al (2004) Calgary experience with West Nile virus neurological syndrome during the late summer of 2003. Can J Neurol Sci 31(2):194–203

    Article  PubMed  Google Scholar 

  198. Chan-Tack KM, Forrest G (2005) Failure of interferon alpha-2b in a patient with West Nile virus meningoencephalitis and acute flaccid paralysis. Scand J Infect Dis 37(11–12):944–946

    Article  PubMed  Google Scholar 

  199. Kalil AC et al (2005) Use of interferon-alpha in patients with West Nile encephalitis: report of 2 cases. Clin Infect Dis 40(5):764–766

    Article  PubMed  Google Scholar 

  200. Lewis M, Amsden JR (2007) Successful treatment of West Nile virus infection after approximately 3 weeks into the disease course. Pharmacotherapy 27(3):455–458

    Article  CAS  PubMed  Google Scholar 

  201. Winston DJ et al (2014) Donor-derived West Nile virus infection in solid organ transplant recipients: report of four additional cases and review of clinical, diagnostic, and therapeutic features. Transplantation 97(9):881–889

    Article  PubMed  PubMed Central  Google Scholar 

  202. Boldescu V et al (2017) Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov 16(8):565–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Barzon L, Palu G (2018) Recent developments in vaccines and biological therapies against Japanese encephalitis virus. Expert Opin Biol Ther 18(8):851–864

    Article  CAS  PubMed  Google Scholar 

  204. Gea-Banacloche J et al (2004) West Nile virus: pathogenesis and therapeutic options. Ann Intern Med 140(7):545–553

    Article  PubMed  Google Scholar 

  205. Blazquez AB, Martin-Acebes MA, Saiz JC (2016) Inhibition of West Nile virus multiplication in cell culture by anti-parkinsonian drugs. Front Microbiol 7:296

    Article  PubMed  PubMed Central  Google Scholar 

  206. Narayanaswami P, Edwards L, Hyde C, Page C, Hastings NE (2004) West Nile meningitis/encephalitis: experience with corticosteroid therapy. Neurology 62:A404

    Google Scholar 

  207. Pyrgos V, Younus F (2004) High-dose steroids in the management of acute flaccid paralysis due to West Nile virus infection. Scand J Infect Dis 36(6–7):509–512

    Article  PubMed  Google Scholar 

  208. Lambert SL et al (2016) Severe West Nile virus meningoencephalitis in a pediatric renal transplant recipient: successful recovery and long-term neuropsychological outcome. Pediatr Transplant 20(6):836–839

    Article  CAS  PubMed  Google Scholar 

  209. Karagianni P et al (2019) West Nile virus infection triggering autoimmune encephalitis: pathophysiological and therapeutic implications. Clin Immunol 207:97–99

    Article  CAS  PubMed  Google Scholar 

  210. Leis AA, Sinclair DJ (2019) Lazarus effect of High dose corticosteroids in a patient with West Nile virus encephalitis: a coincidence or a clue? Front Med (Lausanne) 6:81

    Article  Google Scholar 

  211. Suen WW, Imoda M, Thomas AW, Nasir NNBM, Tearnsing N, Wang W, Bielefeldt-Ohmann H (2019) An acute stress model in New Zealand white rabbits exhibits altered immune response to infection with West Nile Virus. Pathogens 8(4):195

    Article  CAS  PubMed Central  Google Scholar 

  212. Benhamou Y, Tubiana R, Thibault V (2003) Tenofovir disoproxil fumarate in patients with HIV and lamivudine-resistant hepatitis B virus. N Engl J Med 348(2):177–178

    Article  CAS  PubMed  Google Scholar 

  213. De Clercq E, Holy A (2005) Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov 4(11):928–940

    Article  PubMed  CAS  Google Scholar 

  214. Stedman C (2014) Sofosbuvir, a NS5B polymerase inhibitor in the treatment of hepatitis C: a review of its clinical potential. Ther Adv Gastroenterol 7(3):131–140

    Article  CAS  Google Scholar 

  215. Huang YS et al (2016) Virological response to Tenofovir Disoproxil fumarate in HIV-positive patients with lamivudine-resistant hepatitis B virus coinfection in an area Hyperendemic for hepatitis B virus infection. PLoS One 11(12):e0169228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Ray AS, Fordyce MW, Hitchcock MJ (2016) Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of human immunodeficiency virus. Antivir Res 125:63–70

    Article  CAS  PubMed  Google Scholar 

  217. Therapuetics, S (2006) AVI BioPharma announces positive clinical trial results delivering NEUGENE antisense drugs to the central nervous system

    Google Scholar 

  218. Eyer L et al (2019) Viral RNA-dependent RNA polymerase inhibitor 7-Deaza-2’-C-methyladenosine prevents death in a mouse model of West Nile virus infection. Antimicrob Agents Chemother 63(3):e02093–e02118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Engle MJ, Diamond MS (2003) Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. J Virol 77(24):12941–12949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Shimoni Z et al (2001) Treatment of West Nile virus encephalitis with intravenous immunoglobulin. Emerg Infect Dis 7(4):759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ben-Nathan D et al (2009) Using high titer West Nile intravenous immunoglobulin from selected Israeli donors for treatment of West Nile virus infection. BMC Infect Dis 9:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Saquib R et al (2008) West Nile virus encephalitis in a renal transplant recipient: the role of intravenous immunoglobulin. Am J Kidney Dis 52(5):e19–e21

    Article  PubMed  Google Scholar 

  223. Makhoul B et al (2009) Hyperimmune gammaglobulin for the treatment of West Nile virus encephalitis. Isr Med Assoc J 11(3):151–153

    PubMed  Google Scholar 

  224. Walid MS, Mahmoud FA (2009) Successful treatment with intravenous immunoglobulin of acute flaccid paralysis caused by west nile virus. Perm J 13(3):43–46

    Article  PubMed  PubMed Central  Google Scholar 

  225. Morelli MC et al (2010) Absence of neuroinvasive disease in a liver transplant recipient who acquired West Nile virus (WNV) infection from the organ donor and who received WNV antibodies prophylactically. Clin Infect Dis 51(4):e34–e37

    Article  PubMed  Google Scholar 

  226. Rhee C et al (2011) West Nile virus encephalitis acquired via liver transplantation and clinical response to intravenous immunoglobulin: case report and review of the literature. Transpl Infect Dis 13(3):312–317

    Article  CAS  PubMed  Google Scholar 

  227. Gnann JW Jr et al (2019) Lack of efficacy of high-titered immunoglobulin in patients with West Nile virus central nervous system disease. Emerg Infect Dis 25(11):2064–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Brinton MA (2002) The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu Rev Microbiol 56:371–402

    Article  CAS  PubMed  Google Scholar 

  229. Ben-Nathan D et al (2003) Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West Nile virus infection in mice. J Infect Dis 188(1):5–12

    Article  CAS  PubMed  Google Scholar 

  230. Oliphant T et al (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11(5):522–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Throsby M et al (2006) Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile virus. J Virol 80(14):6982–6992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Sultana H et al (2009) Fusion loop peptide of the West Nile virus envelope protein is essential for pathogenesis and is recognized by a therapeutic cross-reactive human monoclonal antibody. J Immunol 183(1):650–660

    Article  CAS  PubMed  Google Scholar 

  233. Vogt MR et al (2009) Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step. J Virol 83(13):6494–6507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zhang S et al (2009) Development of resistance to passive therapy with a potently neutralizing humanized monoclonal antibody against West Nile virus. J Infect Dis 200(2):202–205

    Article  CAS  PubMed  Google Scholar 

  235. Ozawa T et al (2018) Human monoclonal antibodies against West Nile virus from Japanese encephalitis-vaccinated volunteers. Antivir Res 154:58–65

    Article  CAS  PubMed  Google Scholar 

  236. Morrey JD et al (2006) Humanized monoclonal antibody against West Nile virus envelope protein administered after neuronal infection protects against lethal encephalitis in hamsters. J Infect Dis 194(9):1300–1308

    Article  CAS  PubMed  Google Scholar 

  237. Morrey JD et al (2007) Defining limits of treatment with humanized neutralizing monoclonal antibody for West Nile virus neurological infection in a hamster model. Antimicrob Agents Chemother 51(7):2396–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Morrey JD et al (2008) West Nile virus-induced acute flaccid paralysis is prevented by monoclonal antibody treatment when administered after infection of spinal cord neurons. J Neurovirol 14(2):152–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Beigel JH et al (2010) Safety and pharmacokinetics of single intravenous dose of MGAWN1, a novel monoclonal antibody to West Nile virus. Antimicrob Agents Chemother 54(6):2431–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Spengler U (2018) Direct antiviral agents (DAAs) - a new age in the treatment of hepatitis C virus infection. Pharmacol Ther 183:118–126

    Article  CAS  PubMed  Google Scholar 

  241. Petersen LR, Brault AC, Nasci RS (2013) West Nile virus: review of the literature. JAMA 310(3):308–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Amanna IJ, Slifka MK (2014) Current trends in West Nile virus vaccine development. Expert Rev Vaccines 13(5):589–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ulbert S (2019) West Nile virus vaccines - current situation and future directions. Hum Vaccin Immunother 15(10):2337–2342

    Article  PubMed  PubMed Central  Google Scholar 

  244. Cobb N et al (2019) The SMART IRB platform: a national resource for IRB review for multisite studies. J Clin Transl Sci 3(4):129–139

    Article  PubMed  PubMed Central  Google Scholar 

  245. Wilder-Smith A et al (2019) Dengue. Lancet 393(10169):350–363

    Article  PubMed  Google Scholar 

  246. Iyer AV, Kousoulas KG (2013) A review of vaccine approaches for West Nile virus. Int J Environ Res Public Health 10(9):4200–4223

    Article  PubMed  PubMed Central  Google Scholar 

  247. Karaca K et al (2005) Recombinant canarypox vectored West Nile virus (WNV) vaccine protects dogs and cats against a mosquito WNV challenge. Vaccine 23(29):3808–3813

    Article  CAS  PubMed  Google Scholar 

  248. Chang GJ et al (2007) Prospective immunization of the endangered California condors (Gymnogyps californianus) protects this species from lethal West Nile virus infection. Vaccine 25(12):2325–2330

    Article  CAS  PubMed  Google Scholar 

  249. Wheeler SS et al (2011) Efficacy of three vaccines in protecting Western scrub-jays (Aphelocoma californica) from experimental infection with West Nile virus: implications for vaccination of island scrub-jays (Aphelocoma insularis). Vector Borne Zoonotic Dis 11(8):1069–1080

    Article  PubMed  PubMed Central  Google Scholar 

  250. Collins MH, Metz SW (2017) Progress and works in progress: update on Flavivirus vaccine development. Clin Ther 39(8):1519–1536

    Article  PubMed  Google Scholar 

  251. Lieberman MM et al (2009) Immunogenicity and protective efficacy of a recombinant subunit West Nile virus vaccine in rhesus monkeys. Clin Vaccine Immunol 16(9):1332–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ledgerwood JE et al (2011) A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis 203(10):1396–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Dayan GH et al (2013) Preclinical and clinical development of a YFV 17 D-based chimeric vaccine against West Nile virus. Viruses 5(12):3048–3070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Durbin AP et al (2013) The live attenuated chimeric vaccine rWN/DEN4Delta30 is well-tolerated and immunogenic in healthy flavivirus-naive adult volunteers. Vaccine 31(48):5772–5777

    Article  CAS  PubMed  Google Scholar 

  255. Barrett PN et al (2017) Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev Vaccines 16(9):883–894

    Article  CAS  PubMed  Google Scholar 

  256. Woods CW et al (2019) An observer blinded, randomized, placebo-controlled, phase I dose escalation trial to evaluate the safety and immunogenicity of an inactivated West Nile virus vaccine, HydroVax-001, in healthy adults. Vaccine 37(30):4222–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Munyua PM et al (2019) Successes and challenges of the one health approach in Kenya over the last decade. BMC Public Health 19(Suppl 3):465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Webster JP et al (2016) One health - an ecological and evolutionary framework for tackling neglected zoonotic diseases. Evol Appl 9(2):313–333

    Article  PubMed  PubMed Central  Google Scholar 

  259. Karesh WB et al (2012) Ecology of zoonoses: natural and unnatural histories. Lancet 380(9857):1936–1945

    Article  PubMed  PubMed Central  Google Scholar 

  260. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife--threats to biodiversity and human health. Science 287(5452):443–449

    Article  CAS  PubMed  Google Scholar 

  261. Shapiro H, Micucci S (2003) Pesticide use for West Nile virus. CMAJ 168(11):1427–1430

    PubMed  PubMed Central  Google Scholar 

  262. Elnaiem DE et al (2008) Impact of aerial spraying of pyrethrin insecticide on Culex pipiens and Culex tarsalis (Diptera: Culicidae) abundance and West Nile virus infection rates in an urban/suburban area of Sacramento County, California. J Med Entomol 45(4):751–757

    Article  PubMed  Google Scholar 

  263. Paul A et al (2005) Insecticide resistance in Culex pipiens from New York. J Am Mosq Control Assoc 21(3):305–309

    Article  CAS  PubMed  Google Scholar 

  264. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Article  CAS  PubMed  Google Scholar 

  265. Naqqash MN et al (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115(4):1363–1373

    Article  PubMed  Google Scholar 

  266. Weathered JAH (2019) Adaptation to agricultural pesticides may allow mosquitoes to avoid predators and colonize novel ecosystems. Oecologia 190(1):219–227

    Article  PubMed  Google Scholar 

  267. Franz AW et al (2006) Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci U S A 103(11):4198–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Franz AW et al (2014) Fitness impact and stability of a transgene conferring resistance to dengue-2 virus following introgression into a genetically diverse Aedes aegypti strain. PLoS Negl Trop Dis 8(5):e2833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  269. Blair CD, Olson KE (2015) The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses 7(2):820–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Buchman A et al (2019) Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs. Proc Natl Acad Sci U S A 116(9):3656–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Thomas DD et al (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287(5462):2474–2476

    Article  CAS  PubMed  Google Scholar 

  272. Alphey L et al (2013) Genetic control of Aedes mosquitoes. Pathog Glob Health 107(4):170–179

    Article  PubMed  PubMed Central  Google Scholar 

  273. Carvalho DO et al (2014) Two step male release strategy using transgenic mosquito lines to control transmission of vector-borne diseases. Acta Trop 132(Suppl):S170–S177

    Article  PubMed  Google Scholar 

  274. Zink SD et al (2015) Exposure to West Nile virus increases bacterial diversity and immune gene expression in Culex pipiens. Viruses 7(10):5619–5631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Novakova E et al (2017) Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus. Front Microbiol 8:526

    Article  PubMed  PubMed Central  Google Scholar 

  276. Saldana MA, Hegde S, Hughes GL (2017) Microbial control of arthropod-borne disease. Mem Inst Oswaldo Cruz 112(2):81–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Duryea R, Donnelly J, Guthrie D, O’malley C, Romanowski M, Schmidt R (1996) Gambusia affinis effectiveness in New Jersey mosquito control. In: Proceedings of the 83rd Meeting of the New Jersey Mosquito Control Association, Inc

    Google Scholar 

  278. Louca V et al (2009) Role of fish as predators of mosquito larvae on the floodplain of the Gambia River. J Med Entomol 46(3):546–556

    Article  PubMed  Google Scholar 

  279. Focks DA, Sackett SR, Bailey DL (1982) Field experiments on the control of Aedes aegypti and Culex quinquefasciatus by Toxorhynchites rutilus rutilus (Diptera: Culicidae). J Med Entomol 19(3):336–339

    Article  CAS  PubMed  Google Scholar 

  280. Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Yu X, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. In: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  281. Paz S (2015) Climate change impacts on West Nile virus transmission in a global context. Philos Trans R Soc Lond Ser B Biol Sci 370(1665):20130561

    Article  Google Scholar 

  282. Chen CC, Jenkins E, Epp T, Waldner C, Curry PS, Soos C (2013) Climate change and West Nile virus in a highly endemic region of North America. Int J Environ Res Public Health 10(7):3052–3071

    Article  PubMed  PubMed Central  Google Scholar 

  283. Petersen LR (2019) Epidemiology of West Nile virus in the United States: implications for Arbovirology and public health. J Med Entomol 56(6):1456–1462

    Article  PubMed  Google Scholar 

  284. Mostashari F et al (2001) Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet 358(9278):261–264

    Article  CAS  PubMed  Google Scholar 

  285. High KP et al (2010) Workshop on immunizations in older adults: identifying future research agendas. J Am Geriatr Soc 58(4):765–776

    Article  PubMed  Google Scholar 

  286. Del Giudice G et al (2018) Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. NPJ Aging Mech Dis 4:1

    Article  PubMed  CAS  Google Scholar 

  287. Bardina SV et al (2017) Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356(6334):175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Kaiser JA, Barrett ADT (2019) Twenty years of progress toward West Nile virus vaccine development. Viruses 11(9):823

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon E. Ronca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gulas-Wroblewski, B.E., Saldaña, M.A., Murray, K.O., Ronca, S.E. (2021). West Nile Virus. In: Weatherhead, J.E. (eds) Neglected Tropical Diseases - North America. Neglected Tropical Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-63384-4_10

Download citation

Publish with us

Policies and ethics