Skip to main content

Systems Biology Approaches and Tools for Analysis of Interactomes and Multi-target Drugs

  • Protocol
  • First Online:
Systems Biology in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 662))

Abstract

Systems biology is essentially a proteomic and epigenetic exercise because the relatively condensed information of genomes unfolds on the level of proteins. The flexibility of cellular architectures is not only mediated by a dazzling number of proteinaceous species but moreover by the kinetics of their molecular changes: The time scales of posttranslational modifications range from milliseconds to years. The genetic framework of an organism only provides the blue print of protein embodiments which are constantly shaped by external input. Indeed, posttranslational modifications of proteins represent the scope and velocity of these inputs and fulfil the requirements of integration of external spatiotemporal signal transduction inside an organism. The optimization of biochemical networks for this type of information processing and storage results in chemically extremely fine tuned molecular entities. The huge dynamic range of concentrations, the chemical diversity and the necessity of synchronisation of complex protein expression patterns pose the major challenge of systemic analysis of biological models.

One further message is that many of the key reactions in living systems are essentially based on interactions of moderate affinities and moderate selectivities. This principle is responsible for the enormous flexibility and redundancy of cellular circuitries. In complex disorders such as cancer or neurodegenerative diseases, which initially appear to be rooted in relatively subtle dysfunctions of multimodal physiologic pathways, drug discovery programs based on the concept of high affinity/high specificity compounds (“one-target, one-disease”), which has been dominating the pharmaceutical industry for a long time, increasingly turn out to be unsuccessful. Despite improvements in rational drug design and high throughput screening methods, the number of novel, single-target drugs fell much behind expectations during the past decade, and the treatment of “complex diseases” remains a most pressing medical need. Currently, a change of paradigm can be observed with regard to a new interest in agents that modulate multiple targets simultaneously, essentially “dirty drugs.” Targeting cellular function as a system rather than on the level of the single target, significantly increases the size of the drugable proteome and is expected to introduce novel classes of multi-target drugs with fewer adverse effects and toxicity. Multiple target approaches have recently been used to design medications against atherosclerosis, cancer, depression, psychosis and neurodegenerative diseases. A focussed approach towards “systemic” drugs will certainly require the development of novel computational and mathematical concepts for appropriate modelling of complex data. But the key is the extraction of relevant molecular information from biological systems by implementing rigid statistical procedures to differential proteomic analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boone C, Bussey H, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8:437–449

    Article  CAS  PubMed  Google Scholar 

  2. Davierwala AP, Haynes J, Li Z, Brost RL, Robinson MD, Yu L, Mnaimneh S, Ding H, Zhu H, Chen Y, Cheng X, Brown GW, Boone C, Andrews BJ, Hughes TR (2005) The synthetic genetic interaction spectrum of essential genes. Nat Genet 37:1147–1152

    Article  CAS  PubMed  Google Scholar 

  3. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  CAS  PubMed  Google Scholar 

  4. Hughes TR, Robinson MD, Mitsakakis N, Johnston M (2004) The promise of functional genomics: completing the encyclopedia of a cell. Curr Opin Microbiol 7:546–554

    Article  CAS  PubMed  Google Scholar 

  5. Dolinski K, Botstein D (2005) Changing perspectives in yeast research nearly a decade after the genome sequence. Genome Res 15:1611–1619

    Article  CAS  PubMed  Google Scholar 

  6. Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38:896–903

    Article  CAS  PubMed  Google Scholar 

  7. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ, Zhao Z, Smogorzewska A, Sowa ME, Ang XL, Westbrook TF, Liang AC, Chang K, Hackett JA, Harper JW, Hannon GJ, Elledge SJ (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, Elledge SJ, Hannon GJ, Chang K (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319:617–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de V, Bernards R (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12:395–402

    Article  CAS  PubMed  Google Scholar 

  10. Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

    Article  CAS  PubMed  Google Scholar 

  11. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X, Hinkle G, Boehm JS, Beroukhim R, Weir BA, Mermel C, Barbie DA, Awad T, Zhou X, Nguyen T, Piqani B, Li C, Golub TR, Meyerson M, Hacohen N, Hahn WC, Lander ES, Sabatini DM, Root DE (2008) Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA 105:20380–20385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  CAS  PubMed  Google Scholar 

  14. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  CAS  PubMed  Google Scholar 

  15. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St OP, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  CAS  PubMed  Google Scholar 

  16. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  PubMed  Google Scholar 

  17. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El BM, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  18. Maxwell CA, Moreno V, Sole X, Gomez L, Hernandez P, Urruticoechea A, Pujana MA (2008) Genetic interactions: the missing links for a better understanding of cancer susceptibility, progression and treatment. Mol Cancer 7:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Groebe K, Krause F, Kunstmann B, Unterluggauer H, Reifschneider NH, Scheckhuber CQ, Sastri C, Stegmann W, Wozny W, Schwall GP, Poznanovic S, Dencher NA, Jansen-Durr P, Osiewacz HD, Schrattenholz A (2007) Differential proteomic profiling of mitochondria from Podospora anserina, rat and human reveals distinct patterns of age-related oxidative changes. Exp Gerontol 42:887–898

    Article  CAS  PubMed  Google Scholar 

  20. Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22:62–69

    Article  CAS  PubMed  Google Scholar 

  21. Sharom JR, Bellows DS, Tyers M (2004) From large networks to small molecules. Curr Opin Chem Biol 8:81–90

    Article  CAS  PubMed  Google Scholar 

  22. Burkard ME, Randall CL, Larochelle S, Zhang C, Shokat KM, Fisher RP, Jallepalli PV (2007) Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc Natl Acad Sci USA 104:4383–4388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Larochelle S, Merrick KA, Terret ME, Wohlbold L, Barboza NM, Zhang C, Shokat KM, Jallepalli PV, Fisher RP (2007) Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol Cell 25:839–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schrattenholz A, Soskic V (2008) What does systems biology mean for drug development? Curr Top Med Chem 15:1520–1528

    Article  CAS  Google Scholar 

  25. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683

    Article  CAS  PubMed  Google Scholar 

  26. Youdim MB (2007) Magic bullets or novel multimodal drugs with various CNS targets for Parkinson’s disease? Nat Rev Drug Discov 6:499–500

    Article  CAS  Google Scholar 

  27. Natt F (2007) siRNAs in drug discovery: target validation and beyond. Curr Opin Mol Ther 9:242–247

    CAS  PubMed  Google Scholar 

  28. Burbaum J, Tobal GM (2002) Proteomics in drug discovery. Curr Opin Chem Biol 6:427–433

    Article  CAS  PubMed  Google Scholar 

  29. Keskin O, Gursoy A, Ma B, Nussinov R (2007) Towards drugs targeting multiple proteins in a systems biology approach. Curr Top Med Chem 7:943–951

    Article  CAS  PubMed  Google Scholar 

  30. Soskic V, Klemm M, Proikas-Cezanne T, Schwall GP, Poznanovic S, Stegmann W, Groebe K, Zengerling H, Schoepf R, Burnet M, Schrattenholz A (2007) A connection between the mitochondrial permeability transition pore, autophagy and cerebral amyloidogenesis. J Proteome Res 7:2262–2269

    Article  CAS  Google Scholar 

  31. Drews J, Ryser S (1997) The role of innovation in drug development. Nat Biotechnol 15:1318–1319

    Article  CAS  PubMed  Google Scholar 

  32. Imming P, Sinning C, Meyer A (2006) Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov 5:821–834

    Article  CAS  PubMed  Google Scholar 

  33. Schrattenholz A, Soskic V (2006) NMDA receptors are not alone: dynamic regulation of NMDA receptor structure and function by neuregulins and transient cholesterol-rich membrane domains leads to disease-specific nuances of glutamate-signalling. Curr Top Med Chem 6:663–686

    Article  CAS  PubMed  Google Scholar 

  34. Apic G, Ignjatovic T, Boyer S, Russell RB (2005) Illuminating drug discovery with biological pathways. FEBS Lett 579:1872–1877

    Article  CAS  PubMed  Google Scholar 

  35. Huang S, Ingber DE (2006) A non-genetic basis for cancer progression and metastasis: self-organizing attractors in cell regulatory networks. Breast Dis 26:27–54

    CAS  PubMed  Google Scholar 

  36. Tsuda I, Fujii H (2007) Chaos reality in the brain. J Integr Neurosci 6:309–326

    Article  PubMed  Google Scholar 

  37. Schoner G, Scholz JP (2007) Analyzing variance in multi-degree-of-freedom movements: uncovering structure versus extracting correlations. Mot Control 11:259–275

    Google Scholar 

  38. Southern J, Pitt-Francis J, Whiteley J, Stokeley D, Kobashi H, Nobes R, Kadooka Y, Gavaghan D (2008) Multi-scale computational modelling in biology and physiology. Prog Biophys Mol Biol 96:60–89

    Article  CAS  PubMed  Google Scholar 

  39. Price ND, Shmulevich I (2007) Biochemical and statistical network models for systems biology. Curr Opin Biotechnol 18:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Konopka AK (2007) Surrogacy theory and models of convoluted organic systems. Proteomics 7:846–856

    Article  CAS  PubMed  Google Scholar 

  41. Huang S, Wikswo J (2006) Dimensions of systems biology. Rev Physiol Biochem Pharmacol 157:81–104

    CAS  PubMed  Google Scholar 

  42. Boelsterli UA, Lim PL (2007) Mitochondrial abnormalities – a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol 220:92–107

    Article  CAS  PubMed  Google Scholar 

  43. Dykens JA, Marroquin LD, Will Y (2007) Strategies to reduce late-stage drug attrition due to mitochondrial toxicity. Expert Rev Mol Diagn 7:161–175

    Article  CAS  PubMed  Google Scholar 

  44. Lecellier G, Brenner C (2007) Genomic and proteomic screening of apoptosis mitochondrial regulators for drug target discovery. Curr Med Chem 14:875–881

    Article  CAS  PubMed  Google Scholar 

  45. Roses AD, Saunders AM, Huang Y, Strum J, Weisgraber KH, Mahley RW (2007) Complex disease-associated pharmacogenetics: drug efficacy, drug safety, and confirmation of a pathogenetic hypothesis (Alzheimer’s disease). Pharmacogenomics J 7:10–28

    Article  CAS  PubMed  Google Scholar 

  46. Jonker DM, Visser SA, van der Graaf PH, Voskuyl RA, Danhof M (2005) Towards a mechanism-based analysis of pharmacodynamic drug-drug interactions in vivo. Pharmacol Ther 106:1–18

    Article  CAS  PubMed  Google Scholar 

  47. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  48. Ward M (2007) Biomarkers for Alzheimer’s disease. Expert Rev Mol Diagn 7:635–646

    Article  CAS  PubMed  Google Scholar 

  49. Filley CM, Rollins YD, Anderson CA, Arciniegas DB, Howard KL, Murrell JR, Boyer PJ, Kleinschmidt-DeMasters BK, Ghetti B (2007) The genetics of very early onset Alzheimer disease. Cogn Behav Neurol 20:149–156

    Article  PubMed  Google Scholar 

  50. Sonnen JA, Keene CD, Montine KS, Li G, Peskind ER, Zhang J, Montine TJ (2007) Biomarkers for Alzheimer’s disease. Expert Rev Neurother 7:1021–1028

    Article  CAS  PubMed  Google Scholar 

  51. Ertekin-Taner N (2007) Genetics of Alzheimer’s disease: a centennial review. Neurol Clin 25:611–667, v

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chai CK (2007) The genetics of Alzheimer’s disease. Am J Alzheimers Dis Other Demen 22:37–41

    Article  PubMed  Google Scholar 

  53. Mancuso M, Coppede F, Murri L, Siciliano G (2007) Mitochondrial cascade hypothesis of Alzheimer’s disease: myth or reality? Antioxid Redox Signal 9:1631–1646

    Article  CAS  PubMed  Google Scholar 

  54. Reid PC, Urano Y, Kodama T, Hamakubo T (2007) Alzheimer’s disease: cholesterol, membrane rafts, isoprenoids and statins. J Cell Mol Med 11:383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Argyle DJ, Blacking T (2008) From viruses to cancer stem cells: dissecting the pathways to malignancy. Vet J 177:311–323

    Article  CAS  PubMed  Google Scholar 

  56. Sales KM, Winslet MC, Seifalian AM (2007) Stem cells and cancer: an overview. Stem Cell Rev 3:249–255

    Article  CAS  PubMed  Google Scholar 

  57. Alison MR, Murphy G, Leedham S (2008) Stem cells and cancer: a deadly mix. Cell Tissue Res 331:109–124

    Article  PubMed  Google Scholar 

  58. Erenpreisa J, Cragg MS (2007) Cancer: a matter of life cycle? Cell Biol Int 31:1507–1510

    Article  CAS  PubMed  Google Scholar 

  59. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  CAS  Google Scholar 

  60. Venkatesan RN, Bielas JH, Loeb LA (2006) Generation of mutator mutants during carcinogenesis. DNA Repair (Amst) 5:294–302

    Article  CAS  Google Scholar 

  61. Araujo RP, Liotta LA, Petricoin EF (2007) Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nat Rev Drug Discov 6:871–880

    Article  CAS  PubMed  Google Scholar 

  62. Lehar J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, Heilbut AM, Short GF III, Giusti LC, Nolan GP, Magid OA, Lee MS, Borisy AA, Stockwell BR, Keith CT (2007) Chemical combination effects predict connectivity in biological systems. Mol Syst Biol 3:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Avis I, Martinez A, Tauler J, Zudaire E, Mayburd A, Abu-Ghazaleh R, Ondrey F, Mulshine JL (2005) Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition. Cancer Res 65:4181–4190

    Article  CAS  PubMed  Google Scholar 

  64. Liby KT, Yore MM, Sporn MB (2007) Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 7:357–369

    Article  CAS  PubMed  Google Scholar 

  65. Grosser T, Fries S, FitzGerald GA (2006) Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 116:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Frantz S (2005) Drug discovery: playing dirty. Nature 437:942–943

    Article  CAS  PubMed  Google Scholar 

  67. Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 110:135–370

    Article  CAS  PubMed  Google Scholar 

  68. Farah A (2005) Atypicality of atypical antipsychotics. Prim Care Companion J Clin Psychiatry 7:268–274

    Article  PubMed  PubMed Central  Google Scholar 

  69. Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359

    Article  CAS  PubMed  Google Scholar 

  70. Stahl SM (1998) What makes an antipsychotic atypical? J Clin Psychiatry 59:403–404

    Article  CAS  PubMed  Google Scholar 

  71. Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H (1997) Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89: 1881–1886

    Article  CAS  PubMed  Google Scholar 

  72. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 66:2500–2505

    Article  CAS  PubMed  Google Scholar 

  73. Khan N, Afaq F, Mukhtar H (2007) Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis 28:233–239

    Article  CAS  PubMed  Google Scholar 

  74. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  PubMed  Google Scholar 

  75. Dessalew N, Workalemahu M (2008) On the paradigm shift towards multitarget selective drug design. Curr Comput Aided Drug Des 4:76–90

    Article  CAS  Google Scholar 

  76. Korcsmaros T, Szalay MS, Bode C, Kovacs IA, Csermely P (2007) How to design multi-target drugs: target search options in cellular networks. Expert Opin Drug Discov 2:1–10

    Article  Google Scholar 

  77. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  78. Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818

    Article  CAS  PubMed  Google Scholar 

  79. Nacher JC, Schwartz JM (2008) A global view of drug-therapy interactions. BMC Pharmacol 8:5

    Article  PubMed  PubMed Central  Google Scholar 

  80. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178–182

    Article  CAS  PubMed  Google Scholar 

  81. Strong M, Eisenberg D (2007) The protein network as a tool for finding novel drug targets. Prog Drug Res 64:191, 193–215

    Article  CAS  PubMed  Google Scholar 

  82. Morphy R, Rankovic Z (2007) Fragments, network biology and designing multiple ligands. Drug Discov Today 12:156–160

    Article  CAS  PubMed  Google Scholar 

  83. Hyduke DR, Jarboe LR, Tran LM, Chou KJ, Liao JC (2007) Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. Proc Natl Acad Sci USA 104:8484–8489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schrattenholz A, Groebe K (2007) What does it need to be a biomarker? Relationships between resolution, differential quantification and statistical validation of protein surrogate biomarkers. Electrophoresis 28:1970–1979

    Article  CAS  PubMed  Google Scholar 

  85. Kovacs IA, Szalay MS, Csermely P (2005) Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins. FEBS Lett 579:2254–2260

    Article  CAS  PubMed  Google Scholar 

  86. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68

    Article  CAS  PubMed  Google Scholar 

  87. Jiang R, Tu Z, Chen T, Sun F (2006) Network motif identification in stochastic networks. Proc Natl Acad Sci USA 103:9404–9409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  CAS  PubMed  Google Scholar 

  89. Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 303:1538–1542

    Article  CAS  PubMed  Google Scholar 

  90. Agoston V, Csermely P, Pongor S (2005) Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example. Phys Rev E Stat Nonlin Soft Matter Phys 71:051909

    Article  PubMed  CAS  Google Scholar 

  91. Sivachenko AY, Yuryev A (2007) Pathway analysis software as a tool for drug target selection, prioritization and validation of drug mechanism. Expert Opin Ther Targets 11:411–421

    Article  PubMed  Google Scholar 

  92. Herwig R, Lehrach H (2006) Expression profiling of drug response – from genes to pathways. Dialogues Clin Neurosci 8:283–293

    PubMed  PubMed Central  Google Scholar 

  93. Elrick MM, Walgren JL, Mitchell MD, Thompson DC (2006) Proteomics: recent applications and new technologies. Basic Clin Pharmacol Toxicol 98:432–441

    Article  CAS  PubMed  Google Scholar 

  94. Schrattenholz A, Klemm M (2006) How human embryonic stem cell research can impact in vitro drug screening technologies of the future. In: Marx U, Sandig V (eds) Drug testing in vitro: breakthroughs and trends in cell culture technology. Wiley/VCH, New York, pp 205–228

    Chapter  Google Scholar 

  95. Schrattenholz A, Klemm M (2007) Neuronal cell culture from human embryonic stem cells as in vitro model for neuroprotection. ALTEX 24:9–15

    PubMed  Google Scholar 

  96. Malmstrom J, Lee H, Aebersold R (2007) Advances in proteomic workflows for systems biology. Curr Opin Biotechnol 18:378–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hunzinger C, Schrattenholz A, Poznanovic S, Schwall GP, Stegmann W (2006) Comparison of different separation technologies for proteome analyses: isoform resolution as a prerequisite for the definition of protein biomarkers on the level of posttranslational modifications. J Chromatogr A 1123:170–181

    Article  CAS  PubMed  Google Scholar 

  98. Ho E, Webber R, Wilkins MR (2007) Interactive three-dimensional visualization and contextual analysis of protein interaction networks. J Proteome Res 7:104–112

    Article  PubMed  CAS  Google Scholar 

  99. Grillari J, Katinger H, Voglauer R (2006) Aging and the ubiquitinome: traditional and non-traditional functions of ubiquitin in aging cells and tissues. Exp Gerontol 41:1067–1079

    Article  CAS  PubMed  Google Scholar 

  100. Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad B Phys Biol Sci 85:12–36

    Article  CAS  Google Scholar 

  101. Ulrich HD (2009) The SUMO system: an overview. Methods Mol Biol 497:3–16

    Article  CAS  PubMed  Google Scholar 

  102. Schrattenholz A, Šoškic´ V, Groebe K (2010) Synchronisation of posttranslational modifications during ageing: time is a crucial biological dimension. Ann NY Acad Sci 1197:118–128

    Google Scholar 

  103. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  CAS  PubMed  Google Scholar 

  104. Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, Bogue M, Booth T, Brazma A, Brinkman RR, Michael CA, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK Jr, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Le NN, Leebens-Mack J, Lewis SE, Lord P, Mallon AM, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ Jr, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26:889–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK Jr, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJ, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR III, Hermjakob H (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893

    Article  CAS  PubMed  Google Scholar 

  106. Jones AR, Miller M, Aebersold R, Apweiler R, Ball CA, Brazma A, Degreef J, Hardy N, Hermjakob H, Hubbard SJ, Hussey P, Igra M, Jenkins H, Julian RK Jr, Laursen K, Oliver SG, Paton NW, Sansone SA, Sarkans U, Stoeckert CJ Jr, Taylor CF, Whetzel PL, White JA, Spellman P, Pizarro A (2007) The Functional Genomics Experiment model (FuGE): an extensible framework for standards in functional genomics. Nat Biotechnol 25:1127–1133

    Article  CAS  PubMed  Google Scholar 

  107. Kaiser J (2002) Proteomics. Public-private group maps out initiatives. Science 296:827

    Article  CAS  PubMed  Google Scholar 

  108. Orchard S, Hermjakob H, Apweiler R (2003) The proteomics standards initiative. Proteomics 3:1374–1376

    Article  CAS  PubMed  Google Scholar 

  109. Jones P, Cote RG, Martens L, Quinn AF, Taylor CF, Derache W, Hermjakob H, Apweiler R (2006) PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res 34:D659–D663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform 7:109

    Article  CAS  Google Scholar 

  112. Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30:47–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. OMICS 7:355–372

    Article  CAS  PubMed  Google Scholar 

  114. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le NN, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  CAS  PubMed  Google Scholar 

  115. Borger S, Liebermeister W, Klipp E (2006) Prediction of enzyme kinetic parameters based on statistical learning. Genome Inform 17:80–87

    CAS  PubMed  Google Scholar 

  116. Simon GM, Cravatt BF (2008) Challenges for the ‘chemical-systems’ biologist. Nat Chem Biol 4:639–642

    Article  CAS  PubMed  Google Scholar 

  117. Salisbury CM, Cravatt BF (2008) Optimization of activity-based probes for proteomic profiling of histone deacetylase complexes. J Am Chem Soc 130:2184–2194

    Article  CAS  PubMed  Google Scholar 

  118. Rexach JE, Clark PM, Hsieh-Wilson LC (2008) Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 4:97–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Martin BR, Cravatt BF (2009) Large-scale profiling of protein palmitoylation in mammalian cells. Nat Methods 6:135–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Codelli JA, Baskin JM, Agard NJ, Bertozzi CR (2008) Second-generation difluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc 130:11486–11493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ovaa H, van Swieten PF, Kessler BM, Leeuwenburgh MA, Fiebiger E, van den Nieuwendijk AM, Galardy PJ, van der Marel GA, Ploegh HL, Overkleeft HS (2003) Chemistry in living cells: detection of active proteasomes by a two-step labeling strategy. Angew Chem Int Ed Engl 42:3626–3629

    Article  CAS  PubMed  Google Scholar 

  122. Jorgensen JT (2009) New era of personalized medicine: a 10-year anniversary. Oncologist 14:557–558

    Article  PubMed  Google Scholar 

  123. Kurpiers T, Mootz HD (2009) Bioorthogonal ligation in the spotlight. Angew Chem Int Ed Engl 48:1729–1731

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schrattenholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schrattenholz, A., Groebe, K., Soskic, V. (2010). Systems Biology Approaches and Tools for Analysis of Interactomes and Multi-target Drugs. In: Yan, Q. (eds) Systems Biology in Drug Discovery and Development. Methods in Molecular Biology, vol 662. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-800-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-800-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-799-0

  • Online ISBN: 978-1-60761-800-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics