Advertisement

Fluorescence in situ Hybridization with Bacterial Artificial Chromosomes (BACs) to Mitotic Heterochromatin of Drosophila

  • Maria Carmela Accardo
  • Patrizio DimitriEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 659)

Abstract

The organization of eukaryotic chromosomes into euchromatin and heterochromatin represents an enigmatic aspect of genome evolution. Constitutive heterochromatin is a basic, yet still poorly understood component of eukaryotic genomes and its molecular characterization by means of standard genomic approaches is intrinsically difficult. Drosophila melanogaster polytene chromosomes do not seem to be particularly useful to map heterochromatin sequences because the typical features of heterochromatin, organized as it is into a chromocenter, limit cytogenetic analysis. In contrast, constitutive heterochromatin has been well-defined at the cytological level in mitotic chromosomes of neuroblasts and has been subdivided into several bands with differential staining properties. Fluorescence in situ hybridization (FISH) using Bacterial Artificial Chromosomes (BAC) probes that carry large genomic portions defined by sequence annotation has yielded a “revolution” in the field of cytogenetics because it has allowed the mapping of multiple genes at once, thus rendering constitutive heterochromatin amenable to easy and fast cytogenetics analyses. Indeed, BAC-based FISH approaches on Drosophila mitotic chromosomes have made it possible to correlate genomic sequences to their cytogenetic location, aiming to build an integrated map of the pericentric heterochromatin. This chapter presents our standard protocols for BAC-based FISH, aimed at mapping large chromosomal regions of mitotic heterochromatin in Drosophila melanogaster.

Key words

Bacterial artificial chromosomes Drosophila melanogaster Fluorescence in situ hybridization Mitotic heterochromatin 

Notes

Acknowledgments

M. C. Accardo and P. Dimitri are supported by grants from National Institute of health (NIH) and Istituto Pasteur-Fondazione Cenci-Bolognetti. Work published despite of dramatic reduction in financial support to public research by the Italian Government.

References

  1. 1.
    Bauman JG., Wiegant J., Borst P., Van Duijn P. (1980) A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome labelled RNA. Exp. Cell Res. 128, 485–490.PubMedCrossRefGoogle Scholar
  2. 2.
    Shizuya H., Birren B., Kim UJ., Mancino V., Slepak T., Tachiiri Y., Simon M. (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA. 89, 8794–8797.PubMedCrossRefGoogle Scholar
  3. 3.
    Bauman JG., Wiegant J., Van Duijn P., Lubsen NH., Sondermeijer PJ., Hennig W, Kubli E. (1981) Rapid and high resolution detection of in situ hybridisation to polytene chromosomes using fluorochrome-labeled RNA. Chromosoma. 84, 1–18.PubMedCrossRefGoogle Scholar
  4. 4.
    Miklos GL., Cotsell JN. (1990) Chromosome structure at interfaces between major chromatin types: alpha- and beta- heterochromatin. Bioessays. 12, 1–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Gatti M., Pimpinelli S. (1992) Functional elements in Drosophila melanogaster heterochromatin. Annu. Rev. Genet. 26, 239–275.PubMedCrossRefGoogle Scholar
  6. 6.
    Gatti M, Bonaccorsi S, Pimpinelli S. (1994) Looking at Drosophila mitotic chromosomes. Methods Cell Biol. 44, 371–391.PubMedCrossRefGoogle Scholar
  7. 7.
    Corradini N., Rossi F., Vernì F., Dimitri P. (2003) FISH analysis of Drosophila melanogaster heterochromatin using BACs and P elements. Chromosoma. 112, 26–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Rossi F., Moschetti R., Caizzi R., Corradini N., Dimitri P. (2007) Cytogenetic and molecular characterization of heterochromatin gene models in Drosophila melanogaster. Genetics. 175, 595–607.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoskins RA., Carlson JW., Kennedy C., Acevedo D., Evans-Holm M., Frise E., Wan KH., Park S., Mendez-Lago M., Rossi F., Villasante A., Dimitri P., Karpen GH., Celniker SE. (2007). Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science. 316, 1625–1628.PubMedCrossRefGoogle Scholar
  10. 10.
    Dimitri P., Caizzi R., Giordano E., Accardo MC., Lattanzi G., Biamonti G. (2009) Constitutive heterochromatin: a surprising variety of expressed sequences. Chromosoma. 118, 419–435.PubMedCrossRefGoogle Scholar
  11. 11.
    Yasuhara JC., Marchetti M., Fanti L., Pimpinelli S., Wakimoto BT. (2003) A strategy for mapping the heterochromatin of chromosome 2 of Drosophila melanogaster. Genetica. 117, 217–226.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dipartimento di Genetica e Biologia Molecolare and Istituto Pasteur-Fondazione Cenci-BolognettiUniversità “La Sapienza”RomeItaly

Personalised recommendations