Skip to main content

Measuring Consequences of Protein Misfolding and Cellular Stress Using OMICS Techniques

  • Protocol
  • First Online:
Protein Misfolding and Cellular Stress in Disease and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 648))

Abstract

The ambition to measure all or at least a significant fraction of relevant molecules in a cell culture or tissue sample has reached possible realization with the development of the so-called OMICS technologies. We will here briefly review current technologies and give examples of their applications in investigations related to protein misfolding diseases. We will primarily cover the classical OMICS categories GENOMICS, TRANSCRIPTOMICS, METABOLOMICS, and with some more detail PROTEOMICS. These techniques are in most cases performed by dedicated core facilities or commercial services. We will give an assessment of uses as well as limitations of these technologies supported by examples of their application in research related to protein misfolding. We will further briefly discuss genome-wide RNA interference and finally touch on bioinformatics, because the huge amounts of data typically collected with OMICS techniques requires the application of specific software to handle and stratify the data sets. Today, most biologists using OMICS-techniques must, at least in part, be able to analyze their own data using user-friendly web-based tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stein LD (2008) Bioinformatics: alive and kicking. Genome Biol 9:114

    Article  PubMed  Google Scholar 

  2. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367

    Article  PubMed  CAS  Google Scholar 

  3. Cronin S, Berger S, Ding J, Schymick JC, Washecka N, Hernandez DG, Greenway MJ, Bradley DG, Traynor BJ, Hardiman O (2008) A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet 17:768–774

    Article  PubMed  CAS  Google Scholar 

  4. Simon-Sanchez J, Singleton A (2008) Genome-wide association studies in neurological disorders. Lancet Neurol 7:1067–1072

    Article  PubMed  CAS  Google Scholar 

  5. Pankratz N, Wilk JB, Latourelle JC, DeStefano AL, Halter C, Pugh EW, Doheny KF, Gusella JF, Nichols WC, Foroud T, Myers RH (2009) Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 124:593–605

    Article  PubMed  CAS  Google Scholar 

  6. Hardy J, Singleton A (2009) Genomewide association studies and human disease. N Engl J Med 360:1759–1768

    Article  PubMed  CAS  Google Scholar 

  7. Petsko GA (2009) Guilt by association. Genome Biol 10:104

    Article  PubMed  Google Scholar 

  8. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G, Lin Y, MacDonald JR, Pang AW, Shago M, Stockwell TB, Tsiamouri A, Bafna V, Bansal V, Kravitz SA, Busam DA, Beeson KY, McIntosh TC, Remington KA, Abril JF, Gill J, Borman J, Rogers YH, Frazier ME, Scherer SW, Strausberg RL, Venter JC (2007) The diploid genome sequence of an individual human. PLoS Biol 5:e254

    Article  PubMed  Google Scholar 

  9. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876

    Article  PubMed  CAS  Google Scholar 

  10. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J, Zhang J, Guo Y, Feng B, Li H, Lu Y, Fang X, Liang H, Du Z, Li D, Zhao Y, Hu Y, Yang Z, Zheng H, Hellmann I, Inouye M, Pool J, Yi X, Zhao J, Duan J, Zhou Y, Qin J, Ma L, Li G, Yang Z, Zhang G, Yang B, Yu C, Liang F, Li W, Li S, Li D, Ni P, Ruan J, Li Q, Zhu H, Liu D, Lu Z, Li N, Guo G, Zhang J, Ye J, Fang L, Hao Q, Chen Q, Liang Y, Su Y, San A, Ping C, Yang S, Chen F, Li L, Zhou K, Zheng H, Ren Y, Yang L, Gao Y, Yang G, Li Z, Feng X, Kristiansen K, Wong GK, Nielsen R, Durbin R, Bolund L, Zhang X, Li S, Yang H, Wang J (2008) The diploid genome sequence of an Asian individual. Nature 456:60–65

    Article  PubMed  CAS  Google Scholar 

  11. Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:107–118

    Article  PubMed  CAS  Google Scholar 

  12. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing: from basic research to diagnostics. Clin Chem 55:641–658

    Article  PubMed  CAS  Google Scholar 

  13. Bosch JR, Grody WW (2008) Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J Mol Diagn 10:484–492

    Google Scholar 

  14. Olson MV (2008) Human genetics: Dr Watson’s base pairs. Nature 452:819–820

    Article  PubMed  CAS  Google Scholar 

  15. Kaiser J (2008) DNA sequencing. A plan to capture human diversity in 1000 genomes. Science 319:395

    Article  PubMed  CAS  Google Scholar 

  16. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  PubMed  CAS  Google Scholar 

  17. Wold B, Myers RM (2008) Sequence census methods for functional genomics. Nat Methods 5:19–21

    Article  PubMed  CAS  Google Scholar 

  18. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  19. Mandel S, Grunblatt E, Riederer P, Amariglio N, Jacob-Hirsch J, Rechavi G, Youdim MB (2005) Gene expression profiling of sporadic Parkinson’s disease substantia nigra pars compacta reveals impairment of ubiquitin-proteasome subunits, SKP1A, aldehyde dehydrogenase, and chaperone HSC-70. Ann N Y Acad Sci 1053:356–375

    Article  PubMed  CAS  Google Scholar 

  20. Papapetropoulos S, Shehadeh L, McCorquodale D (2007) Optimizing human post-mortem brain tissue gene expression profiling in Parkinson’s disease and other neurodegenerative disorders: from target “fishing” to translational breakthroughs. J Neurosci Res 85:3013–3024

    Article  PubMed  CAS  Google Scholar 

  21. Kirby J, Heath PR, Shaw PJ, Hamdy FC (2007) Gene expression assays. Adv Clin Chem 44:247–292

    Article  PubMed  CAS  Google Scholar 

  22. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  23. Hu L, Ye M, Jiang X, Feng S, Zou H (2007) Advances in hyphenated analytical techniques for shotgun proteome and peptidome analysis – a review. Anal Chim Acta 598:193–204

    Article  PubMed  CAS  Google Scholar 

  24. Washburn MP, Wolters D, Yates JR III (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  25. Panchaud A, Affolter M, Moreillon P, Kussmann M (2008) Experimental and computational approaches to quantitative proteomics: status quo and outlook. J Proteomics 71:19–33

    Article  PubMed  CAS  Google Scholar 

  26. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture. SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  PubMed  CAS  Google Scholar 

  27. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  PubMed  CAS  Google Scholar 

  28. Kito K, Ito T (2008) Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics 9:263–274

    Article  PubMed  CAS  Google Scholar 

  29. Shi M, Caudle WM, Zhang J (2009) Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol Dis 35:157–164

    Article  PubMed  CAS  Google Scholar 

  30. Chin MH, Qian WJ, Wang H, Petyuk VA, Bloom JS, Sforza DM, Lacan G, Liu D, Khan AH, Cantor RM, Bigelow DJ, Melega WP, Camp DG, Smith RD, Smith DJ (2008) Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease. J Proteome Res 7:666–677

    Article  PubMed  CAS  Google Scholar 

  31. Martin B, Brenneman R, Becker KG, Gucek M, Cole RN, Maudsley S (2008) iTRAQ analysis of complex proteome alterations in 3xTgAD Alzheimer’s mice: understanding the interface between physiology and disease. PLoS One 3:e2750

    Article  PubMed  Google Scholar 

  32. Falsone SF, Gesslbauer B, Rek A, Kungl AJ (2007) A proteomic approach towards the Hsp90-dependent ubiquitinylated proteome. Proteomics 7:2375–2383

    Article  PubMed  CAS  Google Scholar 

  33. Baars L, Ytterberg AJ, Drew D, Wagner S, Thilo C, van Wijk KJ, de Gier JW (2006) Defining the role of the Escherichia coli chaperone SecB using comparative proteomics. J Biol Chem 281:10024–10034

    Article  PubMed  CAS  Google Scholar 

  34. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  PubMed  CAS  Google Scholar 

  35. Dukan S, Farewell A, Ballesteros M, Taddei F, Radman M, Nystrom T (2000) Protein oxidation in response to increased transcriptional or translational errors. Proc Natl Acad Sci U S A 97:5746–5749

    Article  PubMed  CAS  Google Scholar 

  36. Fredriksson A, Ballesteros M, Dukan S, Nystrom T (2006) Induction of the heat shock regulon in response to increased mistranslation requires oxidative modification of the malformed proteins. Mol Microbiol 59:350–359

    Article  PubMed  CAS  Google Scholar 

  37. Bota DA, Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680

    Article  PubMed  CAS  Google Scholar 

  38. Rivett AJ (1985) Preferential degradation of the oxidatively modified form of glutamine synthetase by intracellular mammalian proteases. J Biol Chem 260:300–305

    PubMed  CAS  Google Scholar 

  39. Grune T, Merker K, Sandig G, Davies KJ (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305:709–718

    Article  PubMed  CAS  Google Scholar 

  40. Mirzaei H, Regnier F (2005) Affinity chromatographic selection of carbonylated proteins followed by identification of oxidation sites using tandem mass spectrometry. Anal Chem 77:2386–2392

    Article  PubMed  CAS  Google Scholar 

  41. Lee S, Young NL, Whetstone PA, Cheal SM, Benner WH, Lebrilla CB, Meares CF (2006) Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry. J Proteome Res 5:539–547

    Article  PubMed  CAS  Google Scholar 

  42. Mirzaei H, Regnier F (2006) Enrichment of carbonylated peptides using Girard P reagent and strong cation exchange chromatography. Anal Chem 78:770–778

    Article  PubMed  CAS  Google Scholar 

  43. Mirzaei H, Regnier F (2007) Identification of yeast oxidized proteins: chromatographic top-down approach for identification of carbonylated, fragmented and cross-linked proteins in yeast. J Chromatogr A 1141:22–31

    Article  PubMed  CAS  Google Scholar 

  44. Sorolla MA, Reverter-Branch G, Tamarit J, Ferrer I, Ros J, Cabiscol E (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 45:667–678

    Article  PubMed  CAS  Google Scholar 

  45. Soreghan BA, Lu BW, Thomas SN, Duff K, Rakhmatulin EA, Nikolskaya T, Chen T, Yang AJ (2005) Using proteomics and network analysis to elucidate the consequences of synaptic protein oxidation in a PS1 + AbetaPP mouse model of Alzheimer’s disease. J Alzheimers Dis 8:227–241

    PubMed  CAS  Google Scholar 

  46. Blow N (2008) Metabolomics: Biochemistry’s new look. Nature 455:697–700

    Article  PubMed  CAS  Google Scholar 

  47. Malmendal A, Overgaard J, Bundy JG, Sorensen JG, Nielsen NC, Loeschcke V, Holmstrup M (2006) Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. Am J Physiol Regul Integr Comp Physiol 291:R205–R212

    Article  PubMed  CAS  Google Scholar 

  48. Paddison PJ (2008) RNA interference in mammalian cell systems. Curr Top Microbiol Immunol 320:1–19

    Article  PubMed  CAS  Google Scholar 

  49. van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4:e1000027

    Article  PubMed  Google Scholar 

  50. Motoyama A, Xu T, Ruse CI, Wohlschlegel JA, Yates JR III (2007) Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem 79:3623–3634

    Article  PubMed  CAS  Google Scholar 

  51. Sandra K, Moshir M, D’Hondt F, Verleysen K, Kas K, Sandra P (2008) Highly efficient peptide separations in proteomics Part 1. Unidimensional high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 866:48–63

    Article  PubMed  CAS  Google Scholar 

  52. Fonslow BR, Yates JR III (2009) Capillary electrophoresis applied to proteomic analysis. J Sep Sci 32:1175–1188

    Article  PubMed  CAS  Google Scholar 

  53. Malmstrom J, Lee H, Nesvizhskii AI, Shteynberg D, Mohanty S, Brunner E, Ye M, Weber G, Eckerskorn C, Aebersold R (2006) Optimized peptide separation and identification for mass spectrometry based proteomics via free-flow electrophoresis. J Proteome Res 5:2241–2249

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bross, P., Palmfeldt, J., Hansen, J., Vang, S., Gregersen, N. (2010). Measuring Consequences of Protein Misfolding and Cellular Stress Using OMICS Techniques. In: Bross, P., Gregersen, N. (eds) Protein Misfolding and Cellular Stress in Disease and Aging. Methods in Molecular Biology, vol 648. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-756-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-756-3_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-755-6

  • Online ISBN: 978-1-60761-756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics