Skip to main content

Measurement of Mitochondrial ROS Production

  • Protocol
  • First Online:
Protein Misfolding and Cellular Stress in Disease and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 648))

Abstract

The significance of reactive oxygen species (ROS) as aggravating or primary factors in numerous pathologies is widely recognized, with mitochondria being considered the major intracellular source of ROS. It is not yet possible to routinely measure mitochondrial ROS in animals or cultured cells with a reasonable degree of certainty. However, at the level of isolated mitochondria, one can easily monitor and quantify the rate of ROS production, identify major sites of ROS production, and compare the rates of ROS production in mitochondria isolated from normal and diseased tissue. In this chapter, we describe in detail the most recent and reliable method to measure mitochondrial ROS as the rate of H2O2 emission. This method may be employed with minimal modifications to measure H2O2 production by mitochondria isolated from various tissues and under a wide variety of experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39:443–455

    Article  PubMed  CAS  Google Scholar 

  2. Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370

    Article  PubMed  CAS  Google Scholar 

  3. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  4. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    PubMed  CAS  Google Scholar 

  5. Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F (2008) Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 60:1471–1477

    Article  PubMed  CAS  Google Scholar 

  6. Chinopoulos C, Adam-Vizi V (2006) Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J 273:433–450

    Article  PubMed  CAS  Google Scholar 

  7. Christophe M, Nicolas S (2006) Mitochondria: a target for neuroprotective interventions in cerebral ischemia-reperfusion. Curr Pharm Des 12:739–757

    Article  PubMed  CAS  Google Scholar 

  8. Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36:257–264

    Article  PubMed  CAS  Google Scholar 

  9. Kuroda S, Siesjo BK (1997) Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin Neurosci 4:199–212

    PubMed  CAS  Google Scholar 

  10. Perez-Pinzon MA, Dave KR, Raval AP (2005) Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid Redox Signal 7:1150–1157

    Article  PubMed  CAS  Google Scholar 

  11. Siesjo BK, Elmer E, Janelidze S, Keep M, Kristian T, Ouyang YB, Uchino H (1999) Role and mechanisms of secondary mitochondrial failure. Acta Neurochir Suppl 73:7–13

    PubMed  CAS  Google Scholar 

  12. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  CAS  Google Scholar 

  13. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8:722–728

    Article  PubMed  CAS  Google Scholar 

  14. Afanas’ev IB (2007) Signaling functions of free radicals superoxide & nitric oxide under physiological & pathological conditions. Mol Biotechnol 37:2–4

    Article  PubMed  Google Scholar 

  15. Stone JR, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270

    Article  PubMed  CAS  Google Scholar 

  16. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–645

    Article  PubMed  CAS  Google Scholar 

  17. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214

    Article  CAS  Google Scholar 

  18. Boveris A, Cadenas E (1997) In: Clerch LB, Massaro DJ (ed) Oxygen, gene expression and cellular function, Marcel Dekker, New York, pp 1–25

    Google Scholar 

  19. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    PubMed  CAS  Google Scholar 

  20. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  21. Sawyer DT, Valentine JS (1981) How super is superoxide? Acc Chem Res 14:393–400

    Article  CAS  Google Scholar 

  22. Starkov AA (2006) Protein-mediated energy-dissipating pathways in mitochondria. Chem Biol Interact 163:133–144

    Article  PubMed  CAS  Google Scholar 

  23. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  PubMed  CAS  Google Scholar 

  24. Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17:3–8

    Article  PubMed  CAS  Google Scholar 

  25. Starkov A, Fiskum G (2002) Generation of reactive oxygen species by brain mitochondria mediated by ketoglutarate dehydrogenase. Abstract Viewer/Itinerary Planner Online, Program No. 194.17. Society for Neuroscience, Washington, DC

    Google Scholar 

  26. Starkov AA, Fiskum G (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86:1101–1107

    Article  PubMed  CAS  Google Scholar 

  27. Starkov AA, Polster BM, Fiskum G (2002) Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J Neurochem 83:220–228

    Article  PubMed  CAS  Google Scholar 

  28. Patole MS, Swaroop A, Ramasarma T (1986) Generation of H2O2 in brain mitochondria. J Neurochem 47:1–8

    Article  PubMed  CAS  Google Scholar 

  29. Cino M, Del Maestro RF (1989) Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch Biochem Biophys 269:623–638

    Article  PubMed  CAS  Google Scholar 

  30. Hansford RG, Hogue BA, Mildaziene V (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29:89–95

    Article  PubMed  CAS  Google Scholar 

  31. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  PubMed  CAS  Google Scholar 

  32. Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P) + oxidation–reduction state. Biochem J 368:545–553

    Article  PubMed  CAS  Google Scholar 

  33. Popov VN, Simonian RA, Skulachev VP, Starkov AA (1997) Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria. FEBS Lett 415:87–90

    Article  PubMed  CAS  Google Scholar 

  34. Sorgato MC, Sartorelli L, Loschen G, Azzi A (1974) Oxygen radicals and hydrogen peroxide in rat brain mitochondria. FEBS Lett 45:92–95

    Article  PubMed  CAS  Google Scholar 

  35. Tretter L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 24:7771–7778

    Article  PubMed  CAS  Google Scholar 

  36. Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253:162–168

    Article  PubMed  CAS  Google Scholar 

  37. Starkov AA, Fiskum G (2001) Myxothiazol induces H(2)O(2) production from mitochondrial respiratory chain. Biochem Biophys Res Commun 281:645–650

    Article  PubMed  CAS  Google Scholar 

  38. Votyakova TV, Reynolds IJ (2001) DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–277

    Article  PubMed  CAS  Google Scholar 

  39. Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann NY Acad Sci 1147:37–52

    Article  PubMed  CAS  Google Scholar 

  40. Sims NR (1990) Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J Neurochem 55:698–707

    Article  PubMed  CAS  Google Scholar 

  41. O’Donnell-Tormey J, Nathan CF, Lanks K, DeBoer CJ, de la Harpe J (1987) Secretion of pyruvate. An antioxidant defense of mammalian cells. J Exp Med 165:500–514

    Article  PubMed  Google Scholar 

  42. Varma SD, Devamanoharan PS, Morris SM (1990) Photoinduction of cataracts in rat lens in vitro. Preventive effect of pyruvate. Exp Eye Res 50:805–812

    Article  PubMed  CAS  Google Scholar 

  43. Nath KA, Ngo EO, Hebbel RP, Croatt AJ, Zhou B, Nutter LM (1995) Alpha-ketoacids scavenge H2O2 in vitro and in vivo and reduce menadione-induced DNA injury and cytotoxicity. Am J Physiol 268:C227–C236

    PubMed  CAS  Google Scholar 

  44. Nath KA, Enright H, Nutter L, Fischereder M, Zou JN, Hebbel RP (1994) Effect of pyruvate on oxidant injury to isolated and cellular DNA. Kidney Int 45:166–176

    Article  PubMed  CAS  Google Scholar 

  45. Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17:9060–9067

    PubMed  CAS  Google Scholar 

  46. Holleman MAF (1904) Notice sur l’action de l’eau oxygenee sur les acides a-cetoniques et sur les dicetones 1.2. Recl Trav Chim Pays-Bas Belg 23:169–172

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH/NIA grant AG014930.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly A. Starkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Scienec+Business Media, LLC

About this protocol

Cite this protocol

Starkov, A.A. (2010). Measurement of Mitochondrial ROS Production. In: Bross, P., Gregersen, N. (eds) Protein Misfolding and Cellular Stress in Disease and Aging. Methods in Molecular Biology, vol 648. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-756-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-756-3_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-755-6

  • Online ISBN: 978-1-60761-756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics