Skip to main content

Random Mutagenesis Strategies for Campylobacter and Helicobacter Species

  • Protocol
  • First Online:
In Vitro Mutagenesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 634))

Abstract

Campylobacterand Helicobacterspecies are important pathogens in man and animals. The study of their virulence and physiology has been difficult due to the lack of tractable genetic tools, since many of the techniques established in Escherichia coliand related species were found to be non-functional in Campylobacterand Helicobacterspecies. The advent of functional genomics techniques in the last decade has been accompanied by the development of genetic tools, which take advantage of specific features of Campylobacterand Helicobacter, like natural transformation. This has allowed for the construction of random mutant libraries based on in vitro transposition or ligated loops followed by natural transformation and recombination, thus circumventing selection against sequences when cloning or passaging libraries through E. coli. Uses of the techniques have been in the study of motility, gene expression, and gene essentiality. In this chapter, we discuss the approaches and techniques used for the construction of random mutant libraries in both Campylobacterand Helicobacter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Young KT, Davis LM, Dirita VJ (2007) Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5:665–679

    Article  PubMed  CAS  Google Scholar 

  2. Kusters JG, van Vliet AHM, Kuipers EJ (2006) Pathogenesis of Helicobacter pyloriinfection. Clin Microbiol Rev 19:449–490

    Article  PubMed  CAS  Google Scholar 

  3. Nakagawa S, Takaki Y, Shimamura S, Reysenbach AL, Takai K, Horikoshi K (2007) Deep-sea vent epsilon-proteobacterial genomes provide insights into emergence of pathogens. Proc Natl Acad Sci U S A 104:12146–12150

    Article  PubMed  CAS  Google Scholar 

  4. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD et al (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  PubMed  CAS  Google Scholar 

  5. Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D et al (2000) The genome sequence of the food-borne pathogen Campylobacter jejunireveals hypervariable sequences. Nature 403:665–668

    Article  PubMed  CAS  Google Scholar 

  6. Copass M, Grandi G, Rappuoli R (1997) Introduction of unmarked mutations in the Helicobacter pylori vacAgene with a sucrose sensitivity marker. Infect Immun 65:1949–1952

    PubMed  CAS  Google Scholar 

  7. van Vliet AHM, Wood AC, Henderson J, Wooldridge KG, Ketley JM (1998) Genetic manipulation of enteric Campylobacterspecies. Methods Microbiol 27:407–419

    Article  Google Scholar 

  8. Sheppard SK, McCarthy ND, Falush D, Maiden MC (2008) Convergence of Campylobacterspecies: implications for bacterial evolution. Science 320:237–239

    Article  PubMed  CAS  Google Scholar 

  9. Wang Y, Taylor DE (1990) Natural transformation in Campylobacterspecies. J Bacteriol 172:949–955

    PubMed  CAS  Google Scholar 

  10. de Jonge R, Bakker D, van Vliet AHM, Kuipers EJ, Vandenbroucke-Grauls CM, Kusters JG (2003) Direct random insertion mutagenesis of Helicobacter pylori. J Microbiol Methods 52:93–100

    Article  PubMed  Google Scholar 

  11. Croinin TO, McCormack A, van Vliet AHM, Kusters JG, Bourke B (2007) Random mutagenesis to identify novel Helicobacter mustelaevirulence factors. FEMS Immunol Med Microbiol 50:257–263

    Article  PubMed  CAS  Google Scholar 

  12. Yao R, Burr DH, Doig P, Trust TJ, Niu H, Guerry P (1994) Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol 14:883–893

    Article  PubMed  CAS  Google Scholar 

  13. Bijlsma JJ, Vandenbroucke-Grauls CM, Phadnis SH, Kusters JG (1999) Identification of virulence genes of Helicobacter pyloriby random insertion mutagenesis. Infect Immun 67:2433–2440

    PubMed  CAS  Google Scholar 

  14. de Vries N, Kuipers EJ, Kramer NE, van Vliet AHM, Bijlsma JJ, Kist M et al (2001) Identification of environmental stress-regulated genes in Helicobacter pyloriby a lacZreporter gene fusion system. Helicobacter 6:300–309

    Article  PubMed  Google Scholar 

  15. Dickinson JH, Grant KA, Park SF (1995) Targeted and random mutagenesis of the Campylobacter colichromosome with integrational plasmid vectors. Curr Microbiol 31:92–96

    Article  PubMed  CAS  Google Scholar 

  16. Smeets LC, Bijlsma JJ, Boomkens SY, Vandenbroucke-Grauls CM, Kusters JG (2000) comH, a novel gene essential for natural transformation of Helicobacter pylori. J Bacteriol 182:3948–3954

    Article  PubMed  CAS  Google Scholar 

  17. Labigne A, Courcoux P, Tompkins L (1992) Cloning of Campylobacter jejunigenes required for leucine biosynthesis, and construction of leu-negative mutant of C. jejuniby shuttle transposon mutagenesis. Res Microbiol 143:15–26

    Article  PubMed  CAS  Google Scholar 

  18. Haas R, Meyer TF, van Putten JP (1993) Aflagellated mutants of Helicobacter pylorigenerated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. Mol Microbiol 8:753–760

    Article  PubMed  CAS  Google Scholar 

  19. Colegio OR, Griffin TJ IV, Grindley ND, Galan JE (2001) In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni. J Bacteriol 183:2384–2388

    Article  PubMed  CAS  Google Scholar 

  20. Golden NJ, Camilli A, Acheson DW (2000) Random transposon mutagenesis of Campylobacter jejuni. Infect Immun 68:5450–5453

    Article  PubMed  CAS  Google Scholar 

  21. Hendrixson DR, Akerley BJ, DiRita VJ (2001) Transposon mutagenesis of Campylobacter jejuniidentifies a bipartite energy taxis system required for motility. Mol Microbiol 40:214–224

    Article  PubMed  CAS  Google Scholar 

  22. Baldwin DN, Shepherd B, Kraemer P, Hall MK, Sycuro LK, Pinto-Santini DM, Salama NR (2007) Identification of Helicobacter pylorigenes that contribute to stomach colonization. Infect Immun 75:1005–1016

    Article  PubMed  CAS  Google Scholar 

  23. Chang KC, Yeh YC, Lin TL, Wang JT (2001) Identification of genes associated with natural competence in Helicobacter pyloriby transposon shuttle random mutagenesis. Biochem Biophys Res Commun 288:961–968

    Article  PubMed  CAS  Google Scholar 

  24. Salama NR, Shepherd B, Falkow S (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186:7926–7935

    Article  PubMed  CAS  Google Scholar 

  25. Sharetzsky C, Edlind TD, LiPuma JJ, Stull TL (1991) A novel approach to insertional mutagenesis of Haemophilus influenzae. J Bacteriol 173:1561–1564

    PubMed  CAS  Google Scholar 

  26. de Jonge R, Kuipers EJ, Langeveld SC, Loffeld RJ, Stoof J, van Vliet AH, Kusters JG (2004) The Helicobacter pyloriplasticity region locus jhp0947-jhp0949is associated with duodenal ulcer disease and interleukin-12 production in monocyte cells. FEMS Immunol Med Microbiol 41:161–167

    Article  PubMed  Google Scholar 

  27. Griffin TJ IV, Parsons L, Leschziner AE, DeVost J, Derbyshire KM, Grindley ND (1999) In vitro transposition of Tn552: a tool for DNA sequencing and mutagenesis. Nucleic Acids Res 27:3859–3865

    Article  PubMed  CAS  Google Scholar 

  28. Lampe DJ, Churchill ME, Robertson HM (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 15:5470–5479

    PubMed  CAS  Google Scholar 

  29. van Vliet AHM, Wooldridge KG, Ketley JM (1998) Iron-responsive gene regulation in a Campylobacter jejuni furmutant. J Bacteriol 180:5291–5298

    PubMed  Google Scholar 

  30. van Vliet AHM, Kuipers EJ, Waidner B, Davies BJ, de Vries N, Penn CW et al (2001) Nickel-responsive induction of urease expression in Helicobacter pyloriis mediated at the transcriptional level. Infect Immun 69:4891–4897

    Article  PubMed  Google Scholar 

  31. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2001) Current protocols in molecular biology. Wiley, Malden, MA

    Book  Google Scholar 

  32. Lampe DJ, Akerley BJ, Rubin EJ, Mekalanos JJ, Robertson HM (1999) Hyperactive transposase mutants of the Himar1 mariner transposon. Proc Natl Acad Sci U S A 96:11428–11433

    Article  PubMed  CAS  Google Scholar 

  33. Akerley BJ, Rubin EJ, Camilli A, Lampe DJ, Robertson HM, Mekalanos JJ (1998) Systematic identification of essential genes by in vitromariner mutagenesis. Proc Natl Acad Sci U S A 95:8927–8932

    Article  PubMed  CAS  Google Scholar 

  34. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403

    Article  PubMed  CAS  Google Scholar 

  35. Svensson SL, Davis LM, MacKichan JK, Allan BJ, Pajaniappan M, Thompson SA, Gaynor EC (2009) The CprS sensor kinase of the zoonotic pathogen Campylobacter jejuniinfluences biofilm formation and is required for optimal chick colonization. Mol Microbiol 71:253–272

    Article  PubMed  CAS  Google Scholar 

  36. Brondsted L, Andersen MT, Parker M, Jorgensen K, Ingmer H (2005) The HtrA protease of Campylobacter jejuniis required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl Environ Microbiol 71:3205–3212

    Article  PubMed  CAS  Google Scholar 

  37. MacKichan JK, Gaynor EC, Chang C, Cawthraw S, Newell DG, Miller JF, Falkow S (2004) The Campylobacter jejuni dccRStwo-component system is required for optimal in vivo colonization but is dispensable for in vitro growth. Mol Microbiol 54:1269–1286

    Article  PubMed  CAS  Google Scholar 

  38. Hendrixson DR, DiRita VJ (2004) Identification of Campylobacter jejunigenes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52:471–484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Campylobacterresearch in the Institute of Food Research is supported by the Core Strategic Grant from the Biotechnology and Biological Sciences Research Council (BBSRC). We thank Dr Jerry Wells, Dr Kay Fowler, and other past and present members of our laboratories for their contributions to the development of these protocols.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gaskin, D.J.H., van Vliet, A.H.M. (2010). Random Mutagenesis Strategies for Campylobacter and Helicobacter Species. In: Braman, J. (eds) In Vitro Mutagenesis Protocols. Methods in Molecular Biology, vol 634. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-652-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-652-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-651-1

  • Online ISBN: 978-1-60761-652-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics