Skip to main content

Flexibility in Cell Targeting by Pseudotyping Lentiviral Vectors

  • Protocol
  • First Online:
Lentivirus Gene Engineering Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 614))

Abstract

Lentiviral vectors have become an important research tool and have just entered into clinical trials. As wild-type lentiviruses engage specific receptors that have limited tropism, most investigators have replaced the endogenous envelope glycoprotein with an alternative envelope. Such pseudotyped vectors have the potential to infect a wide variety of cell types and species. Alternatively, selection of certain viral envelope glycoproteins may also facilitate cell targeting to enhance directed gene transfer. We describe the method for generating pseudotyped vector and provide information regarding available pseudotypes and their respective target tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reiser J, Harmison G, Kluepfel-Stahl S, Brady RO, Karlsson S, Schubert M (1996). Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc. Natl. Acad. Sci. U.S.A. 93, 15266-71.

    Article  PubMed  CAS  Google Scholar 

  2. Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ (1998). Minimal requirement of a lentivirus vector based on human immunodeficiency virus type 1. J. Virol. 72, 811-6.

    PubMed  CAS  Google Scholar 

  3. Sutton RE, Wu HTM, Rigg R, Bohnlein E, Brown PO (1998). Human immunodeficiency virus type 1 vectors efficiently transduce huma hematopoietic stem cells. J. Virol. 72, 5781-8.

    PubMed  CAS  Google Scholar 

  4. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996). In vivo gene delivery an stable transducion of nondividing cells by a lentiviral vector. Science 272, 263-7.

    Article  PubMed  CAS  Google Scholar 

  5. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998). Development of a self-inactivating lentivurs vector. J. Virol. 72, 8150-57.

    PubMed  CAS  Google Scholar 

  6. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998). Self-inactivating lentivirus vector for safe and efficiency in vivo gene delivery. J. Virol. 72, 9873-80.

    PubMed  CAS  Google Scholar 

  7. Corbeau P, Kraus G, Wong-Staal F (1998). Transduction of human macrophages using a stable HIV-1/HIV-2-derived gene delivery system. Gene Ther. 5, 99-104.

    Article  PubMed  CAS  Google Scholar 

  8. Sadaie MR, Zamani M, Whang S, Sistron N, Arya SK (1998). Towards developing HIV-2 lentivirus-based retroviral vectors for gene therapy, dual gene expression in the context of HIV-2 LTR and Tat. J. Med. Virol. 54, 118-28.

    Article  PubMed  CAS  Google Scholar 

  9. Negre D, Duisit G, Mangeot PE, Moullier P, Darlix JL, Cosset FL (2002). Lentiviral vectors derived from simian immunodeficiency virus. Curr. Top. Microbiol. Immunol. 261, 53-74.

    Article  PubMed  CAS  Google Scholar 

  10. Gilbert JR, Wong-Staal F (2001). HIV-2 and SIV vector systems. Somat. Cell. Mol. Genet. 26, 83-98

    Article  PubMed  CAS  Google Scholar 

  11. Poeschla EM, Wong-Staal F, Looney DJ (1998). Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat. Med. 4, 354-7.

    Article  PubMed  CAS  Google Scholar 

  12. Johnston J, Power C (1999). Productive infection of human peripheral blood mononuclear cells by feline immunodeficiency virus, implications for vector development. J. Virol. 73, 2491-8.

    PubMed  CAS  Google Scholar 

  13. Olsen JC (2001). EIAV, CAEV and other lentivirus vector systems. Somat. Cell. Mol. Genet. 26, 131-45.

    Article  PubMed  CAS  Google Scholar 

  14. Mselli-Lakhal L, Favier C, Leung K, Guiguen F, Grezel D, Miossec P, Mornex JF, Narayan O, Querat G, Chebloune Y (2000). Lack of functional receptors is the only barrier that prevents caprine arthritis-encephalitis virus from infecting human cells. J. Virol. 74, 8343-8.

    Article  PubMed  CAS  Google Scholar 

  15. Berkowitz R, Ilves H, Lin WY, Eckert K, Coward A, Tamaki S, Veres G, Plavec I (2001). Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J. Virol. 75, 3371-82.

    Article  PubMed  CAS  Google Scholar 

  16. Metharom P, Takyar S, Xia HH, Ellem KA, Macmillan J, Shepherd RW, Wilcox GE, Wei MQ (2000). Novel bovine lentiviral vectors based on Jembrana disease virus. J. Gene Med. 2, 176-85.

    Article  PubMed  CAS  Google Scholar 

  17. Berkowitz RD, Ilves H, Plavec I, Veres G (2001). Gene transfer systems derived from Visna virus, analysis of virus production and infectivity. Virology 279, 116-29.

    Article  PubMed  CAS  Google Scholar 

  18. Zavada J (1972). Pseudotypes of vesicular stomatitis virus with the coat of murine leukaemia and of avian myeloblastosis viruses. J. Gen. Virol. 15, 183-91.

    Article  PubMed  CAS  Google Scholar 

  19. Huang AS, Besmer P, Chu L, Baltimore D (1973). Growth of pseudotypes of vesicular stomatitis virus with N-tropic murine leukemia virus coats in cells resistant to N-tropic viruses. J. Virol. 12, 659-62.

    PubMed  CAS  Google Scholar 

  20. Choppin PW, Compans RW (1970). Phenotypic mixing of envelope proteins of the parainfluenza virus SV5 and vesicular stomatitis virus. J. Virol. 5, 609-16.

    PubMed  CAS  Google Scholar 

  21. Miller AD (1990). Retrovirus packaging cells. Hum. Gene Ther. 1, 5-14.

    Article  PubMed  CAS  Google Scholar 

  22. Freed EO, Martin MA (1995). The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection. J. Biol. Chem. 270, 23883-6.

    Article  PubMed  CAS  Google Scholar 

  23. Beausejour Y, Tremblay MJ (2004). Envelope glycoproteins are not required for insertion of host ICAM-1 into human immunodeficiency virus type 1 and ICAM-1-bearing viruses are still infectious despite a suboptimal level of trimeric envelope proteins. Virology 324, 165-72.

    Article  Google Scholar 

  24. Pickl WF, Pimentel-Muinos FX, Seed B (2001). Lipid rafts and pseudotyping. J. Virol. 75, 7175-83.

    Article  PubMed  CAS  Google Scholar 

  25. Dragic T (2001). An overview of the determinants of CCR5 and CXCR4 co-receptor function. J. Gen. Virol. 82, 1807-14.

    PubMed  CAS  Google Scholar 

  26. Kazmierski WM, Kenakin TP, Gudmundsson KS, (2006). Peptide, peptidomimetic and small-molecule drug discovery targeting HIV-1 host-cell attachment and entry through gp120, gp41, CCR5 and CXCR4. Chem. Biol. Drug Des. 67, 13-26.

    Article  PubMed  CAS  Google Scholar 

  27. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263-7.

    Article  PubMed  CAS  Google Scholar 

  28. Reiser J, Harmison G, Kluepfel-Stahl S, Brady RO, Karlsson S, Schubert M (1996). Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc. Natl. Acad. Sci. U.S.A. 93, 15266-71.

    Article  PubMed  CAS  Google Scholar 

  29. Akkina RK, Walton RM, Chen ML, Li QX, Planelles V, Chen IS (1996). High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581-5.

    PubMed  CAS  Google Scholar 

  30. Steven AC, Spear PG (2006). Biochemistry. Viral glycoproteins and an evolutionary conundrum. Science 313, 177-8.

    Article  PubMed  CAS  Google Scholar 

  31. Sharkey CM, North CL, Kuhn RJ, Sanders DA (2001). Ross River virus glycoprotein-pseudotyped retroviruses and stable cell lines for their production. J. Virol. 75, 2653-9.

    Article  PubMed  CAS  Google Scholar 

  32. Picard-Maureau M, Jarmy G, Berg A, Rethwilm A, Lindemann D (2003). Foamy virus envelope glycoprotein-mediated entry involves a pH-dependent fusion process. J. Virol. 77, 4722-30.

    Article  PubMed  CAS  Google Scholar 

  33. Bertrand P, Cote M, Zheng YM, Albritton LM, Liu SL (2008). Jaagsiekte sheep retrovirus utilizes a pH-dependent endocytosis pathway for entry. J. Virol. 82, 2555-9.

    Article  PubMed  CAS  Google Scholar 

  34. Stein BS, Gowda SD, Lifson JD, Penhallow RC, Bensch KG, Engleman EG (1987). pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49, 659-68.

    Article  PubMed  CAS  Google Scholar 

  35. Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S, Scarselli E, Cortese R, Nicosia A, Cosset FL (2003). Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J. Biol. Chem. 278, 41624-30.

    Article  PubMed  CAS  Google Scholar 

  36. White LK, Yoon JJ, Lee JK, Sun A, Du Y, Fu H, Snyder JP, Plemper R (2007). Nonnucleoside inhibitor of measles virus RNA-dependent RNA polymerase complex activity. Antimicrob. Agents Chemother. 51, 2293-303.

    Article  PubMed  CAS  Google Scholar 

  37. Burns JC, Friedmann T, Driever W, Burrascano M, Yee J-K (1993). Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors, concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. U.S.A. 90, 8033-37.

    Article  PubMed  CAS  Google Scholar 

  38. Takeuchi Y, Simpson G, Vile RG, Weiss RA, Collins MK (1992). Retroviral pseudotypes produced by rescue of a Moloney murine leukemia virus vector by C-type, but not D-type, retroviruses. Virology 186, 792-4.

    Article  PubMed  CAS  Google Scholar 

  39. Lindemann D, Bock M, Schweizer M, Rethwilm A (1997). Efficient pseudotyping of murine leukemia virus particles with chimeric human foamy virus envelope proteins. J. Virol. 71, 4815-20.

    PubMed  CAS  Google Scholar 

  40. Mammano F, Salvatori F, Indraccolo S, De Rossi A, Chieco-Bianchi L, Gottlinger HG (1997). Truncation of the human immunodeficiency virus type 1 envelope glycoprotein allows efficient pseudotyping of Moloney murine leukemia virus particles and gene transfer into CD4+ cells. J. Virol. 71, 3341-45.

    PubMed  CAS  Google Scholar 

  41. Stitz J, Buchholz CJ, Engelstadter M, Uckert W, Bleimer U, Schmitt I, Cichutek K (2000). Lentiviral vectors pseudotyped with envelope glycoproteins derived from Gibbonr Ape Leukemia Virus and Murine Leukemia Virus 10A1. Virology 273, 16-20.

    Article  PubMed  CAS  Google Scholar 

  42. Sandrin V, Boson B, Salmon P, Gay W, Negre D, Le Grand R, Trono D, Cosset F (2002). Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 100, 823-32.

    Article  PubMed  CAS  Google Scholar 

  43. Di Nunzio F, Piovani B, Cosset F-L, Malivio F, Stornaiuolo A (2007). Transduction of human hematopoietic stem cells by lentiviral vectors pseudotyped with the RD114-TR chimeric envelope glycoprotein. Hum. Gene Ther. 18, 811-20.

    Article  PubMed  Google Scholar 

  44. Hanawa H, Kelly PF, Nathwani AC, Persons DA, Vandergriff J, Hargrove P, Vanin EF, Nienhuis AW (2002). Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hemaopoietic cells from human blood. Mol. Ther. 5, 242-51.

    Article  PubMed  CAS  Google Scholar 

  45. Relander T, Johansson M, Olsson K, Ikeda Y, Takeuchi Y, Collins M, Richter J (2002). Gene transfer to repopulating human CD34+ cells using amphotropic-, GALV-, RD114-pseudotyped HIV-1 based vectors from stable producer cells. Mol. Ther. 11, 452-9.

    Article  Google Scholar 

  46. Sharkey CM, North CL, Kuhn RJ, Sanders DA (2001). Ross River virus glycoprotein-pseudotyped retroviruses and stable cell lines for their production. J. Virol. 75, 2653-59.

    Article  PubMed  CAS  Google Scholar 

  47. Kang Y, Stein CS, Heth JA, Sinn PL, Penisten AK, Staber PD, Ratliff KL, Shen H, Barker CK, Martins I, et al. (2002). In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River virus glycoproteins. J. Virol. 76, 9378-88.

    Article  PubMed  CAS  Google Scholar 

  48. Kahl CA, Marsh J, Fyffe J, Sanders DA, Cornetta K (2004). Human immunodeficiency virus type 1-derived lentivirus vectors pseudotyped with envelope glycoproteins derived from Ross River virus and Semliki Forest virus. J. Virol. 78, 1421-30.

    Article  PubMed  CAS  Google Scholar 

  49. Kang Y, S. SC, Heth JA, Sinn PL, Penisten AK, Stabler PD, Ratliff KL, Shen H, Barker CK, Martins I, et al. (2002). In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J. Virol. 76, 9378-88.

    Article  PubMed  CAS  Google Scholar 

  50. Kahl CA, Pollok K, Haneline LS, Cornetta K (2005). Lentiviral vectors pseudotyped with glycoproteins from Ross River and vesicular stomatitis viruses, variable transduction related to cell type and culture conditions. Mol. Ther. 11, 470-82.

    Article  PubMed  CAS  Google Scholar 

  51. Funke S, Maisner A, Muhlebach MD, Koehl U, Grez M, Cattaneo R, Cichutek K, Buchholz CJ (2008). Targeted cell entry of lentiviral vectors. Mol. Ther. 16, 1427-36.

    Article  PubMed  CAS  Google Scholar 

  52. Sinn PL, Penisten AK, Burnight ER, Hickey MA, Williams G, McCoy DM, Mallampalli RK, McCray Jr PB (2005). Gene transfer to respiratory epithelia with lentivirus pseudotyped with Jaagsickte Sheep Retrovirus envelope glycoprotein. Hum. Gene Ther. 16, 479-88.

    Article  PubMed  CAS  Google Scholar 

  53. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998). A third generation lentivirus with a conditional packaging system. J. Virol. 72, 8463-71.

    PubMed  CAS  Google Scholar 

  54. Kahl CA, Marsh J, Fyffe J, Sanders DA, Cornetta K (2004). Human immunodeficiency virus type 1-derived lentivirus vectors pseudotyped with envelope glycoproteins derived from Ross River virus and Semliki Forest virus. J. Virol. 78, 1421-30.

    Article  PubMed  CAS  Google Scholar 

  55. Mochizuki H, Schwartz JP, Tanaka K, Brady RO, Reiser J (1998). High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J. Virol. 72, 8873-83.

    PubMed  CAS  Google Scholar 

  56. Desmaris N, Bosch A, Salaun C, Petit C, Prevost MC, Tordo N, Perrin P, Schwartz O, de Rocquigny H, Heard JM (2001). Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol. Ther. 4, 149-56.

    Article  PubMed  CAS  Google Scholar 

  57. Hanawa H, Kelly PF, Nathwani AC, Persons DA, Vandergriff JA, Hargrove P, Vanin EF, Nienhuis AW (2002). Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol. Ther. 5, 242-51.

    Article  PubMed  CAS  Google Scholar 

  58. Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH, (2002). Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol. Ther. 5, 528-37.

    Article  PubMed  CAS  Google Scholar 

  59. Poeschla E, Gilbert J, Li X, Huang S, Ho A, Wong-Staal F (1998). Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentivirus vectors. J. Virol. 72, 6527-36.

    PubMed  CAS  Google Scholar 

  60. Duisit G, Conrath H, Saleun S, Folliot S, Provost N, Cosset FL, Sandrin V, Moullier P, Rolling F (2002). Five recombinant simian immunodeficiency virus pseudotypes lead to exclusive transduction of retinal pigmented epithelium in rat. Mol. Ther. 6, 446-54.

    Article  PubMed  CAS  Google Scholar 

  61. Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V, Kingsman S, Kingsman A, Mazarakis N (1999). Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 6, 1808-18.

    Article  PubMed  CAS  Google Scholar 

  62. Wong LF, Azzouz M, Walmsley LE, Askham Z, Wilkes FJ, Mitrophanous KA, Kingsman SM, Mazarakis ND (2004). Transduction patterns of pseudotyped lentiviral vectors in the nervous system. Mol. Ther. 9, 101-11.

    Article  PubMed  CAS  Google Scholar 

  63. Olsen JC (1998). Gene transfer vectors derived from equine infectious anemia virus. Gene Ther. 5, 1481-87.

    Article  PubMed  CAS  Google Scholar 

  64. McKay T, Patel M, Pickles RJ, Johnson LG, Olsen JC (2006). Influenza M2 envelope protein augments avian influenza hemagglutinin pseudotyping of lentiviral vectors. Gene Ther. 13, 715-24.

    Article  PubMed  CAS  Google Scholar 

  65. Sandrin V, Boson B, Salmon P, Gay W, Negre D, Le Grand R, Trono D, Cosset FL (2002). Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 100, 823-32.

    Article  PubMed  CAS  Google Scholar 

  66. Strang BL, Takeuchi Y, Relander T, Richter J, Bailey R, Sanders DA, Collins MK, Ikeda Y (2005). Human immunodeficiency virus type 1 vectors with alphavirus envelope glycoproteins produced from stable packaging cells. J. Virol. 79, 1765-71.

    Article  PubMed  CAS  Google Scholar 

  67. Kang Y, Stein CS, Heth JA, Sinn PL, Penisten AK, Staber PD, Ratliff KL, Shen H, Barker CK, Martins I, et al. (2002). In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J. Virol. 76, 9378-88.

    Article  PubMed  CAS  Google Scholar 

  68. Kolokoltsov AA, Weaver SC, Davey RA (2005). Efficient functional pseudotyping of oncoretroviral and lentiviral vectors by Venezuelan equine encephalitis virus envelope proteins. J. Virol. 79, 756-63.

    Article  PubMed  CAS  Google Scholar 

  69. Poluri A, Ainsworth R, Weaver SC, Sutton RE (2008). Functional Pseudotyping of Human Immunodeficiency Virus Type 1 Vectors by Western Equine Encephalitis Virus Envelope Glycoprotein. J. Virol. 82, 12580-4.

    Article  PubMed  CAS  Google Scholar 

  70. Morizono K, Bristol G, Xie YM, Kung SK, Chen IS (2001). Antibody-directed targeting of retroviral vectors via cell surface antigens. J. Virol. 75, 8016-20.

    Article  PubMed  CAS  Google Scholar 

  71. Sinn PL, Hickey MA, Staber PD, Dylla DE, Jeffers SA, Davidson BL, Sanders DA, McCray Jr PB (2003). Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J. Virol. 77, 5902-10.

    Article  PubMed  CAS  Google Scholar 

  72. Strang BL, Ikeda Y, Cosset FL, Collins MK, Takeuchi Y (2004). Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Ther. 11, 591-8.

    Article  PubMed  CAS  Google Scholar 

  73. Christodoulopoulos I, Cannon PM (2001). Sequences in the cytoplasmic tail of the gibbon ape leukemia virus envelope protein that prevent its incorporation into lentivirus vectors. J. Virol. 75, 4129-38.

    Article  PubMed  CAS  Google Scholar 

  74. Di Nunzio F, Piovani B, Cosset FL, Mavilio F, Stornaiuolo A (2007). Transduction of human hematopoietic stem cells by lentiviral vectors pseudotyped with the RD114-TR chimeric envelope glycoprotein. Hum. Gene Ther. 18, 811-20.

    Article  PubMed  Google Scholar 

  75. Zhang XY, La Russa VF, Reiser J (2004). Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J. Virol. 78, 1219-29.

    Article  PubMed  CAS  Google Scholar 

  76. Schambach A, Galla M, Modlich U, Will E, Chandra S, Reeves L, Colbert M, Williams DA, von Kalle C, Baum C (2006). Lentiviral vectors pseudotyped with murine ecotropic envelope, increased biosafety and convenience in preclinical research. Exp. Hematol. 34, 588-92.

    Article  PubMed  CAS  Google Scholar 

  77. Landau NR, Page KA, Littman DR (1991). Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J. Virol. 65, 162, 9.

    PubMed  CAS  Google Scholar 

  78. Liu SL, Halbert CL, Miller AD (2004). Jaagsiekte sheep retrovirus envelope efficiently pseudotypes human immunodeficiency virus type 1-based lentiviral vectors. J. Virol. 78, 2642-47.

    Article  PubMed  CAS  Google Scholar 

  79. Lewis BC, Chinnasamy N, Morgan RA, Varmus HE (2001). Development of an avian leukosis-sarcoma virus subgroup A pseudotyped lentiviral vector. J. Virol. 75, 9339-44.

    Article  PubMed  CAS  Google Scholar 

  80. Frecha C, Costa C, Negre D, Gauthier E, Russell SJ, Cosset FL, Verhoeyen E (2008). Stable transduction of quiescent T-cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood 112, 4843-52.

    Article  PubMed  CAS  Google Scholar 

  81. Jung C, Grzybowski BN, Tong S, Cheng L, Compans RW, Le Doux JM (2004). Lentiviral vectors pseudotyped with envelope glycoproteins derived from human parainfluenza virus type 3. Biotechnol. Prog. 20, 1810-16.

    Article  PubMed  CAS  Google Scholar 

  82. Kowolik CM, Yee JK (2002). Preferential transduction of human hepatocytes with lentiviral vectors pseudotyped by Sendai virus F protein. Mol. Ther. 5, 762-9.

    Article  PubMed  CAS  Google Scholar 

  83. Kobayashi M, Iida A, Ueda Y, Hasegawa M (2003). Pseudotyped lentivirus vectors derived from simian immunodeficiency virus SIVagm with envelope glycoproteins from paramyxovirus. J. Virol. 77, 2607-14.

    Article  PubMed  CAS  Google Scholar 

  84. Kobinger GP, Deng S, Louboutin JP, Vatamaniuk M ,Matschinsky F, Markmann JF, Raper SE, Wilson JM (2004). Transduction of human islets with pseudotyped lentiviral vectors. Hum. Gene Ther. 15, 211-9.

    Article  PubMed  CAS  Google Scholar 

  85. Hsu M, Zhang J, Flint M, Logvinoff C, Cheng-Mayer C, Rice CM, McKeating JA (2003). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc. Natl. Acad. Sci. U.S.A. 100, 7271-6.

    Article  PubMed  CAS  Google Scholar 

  86. Kumar M, Bradow BP, Zimmerberg J (2003). Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum. Gene Ther. 14, 67-77.

    Article  PubMed  CAS  Google Scholar 

  87. Kobinger GP, Weiner DJ, Yu QC, Wilson JM (2001). Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat. Biotechnol. 19, 225-30.

    Article  PubMed  CAS  Google Scholar 

  88. Azzouz M, Le T, Ralph GS, Walmsley L, Monani UR, Lee DC, Wilkes F, Mitrophanous KA, Kingsman SM, Burghes AH, Mazarakis ND (2004). Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J. Clin. Invest. 114, 1726-31.

    PubMed  CAS  Google Scholar 

  89. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004). VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429, 341-7.

    Article  Google Scholar 

  90. Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH (1997). Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641-49.

    PubMed  CAS  Google Scholar 

  91. Stein CS, Martins I, Davidson BL (2005). The lymphocytic choriomeningitis virus envelope glycoprotein targets lentiviral gene transfer vector to neural progenitors in the murine brain. Mol. Ther. 11, 382-9.

    Article  PubMed  CAS  Google Scholar 

  92. Miletic H, Fischer YH, Neumann H, Hans V, Stenzel W, Giroglou T, Hermann M, Deckert M, Von Laer D (2004). Selective transduction of malignant glioma by lentiviral vectors pseudotyped with lymphocytic choriomeningitis virus glycoproteins. Hum. Gene Ther 15, 1091-100.

    Article  PubMed  CAS  Google Scholar 

  93. Relander T, Johansson M, Olsson K, Ikeda Y, Takeuchi Y, Collins M, Richter J (2004). Gene transfer to repopulating human CD34+ cells using amphotropic-, GALV-, or RD114-pseudotyped HIV-1-based vectors from stable producer cells. Mol. Ther. 11, 452-9.

    Article  Google Scholar 

  94. MacKenzie TC, Kobinger GP, Kootstra NA, Radu A, Sena-Esteves M, Bouchard S, Wilson JM, Verma IM, Flake AW (2002). Efficient transduction of liver and muscle after in utero injection of lentiviral vectors with different pseudotypes. Mol. Ther. 6, 349-58.

    Article  PubMed  CAS  Google Scholar 

  95. Auricchio A, Kobinger G, Anand V, Hildinger M, O’Connor E, Maguire AM, Wilson JM, Bennett J (2001). Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics, the retina as a model. Hum. Mol. Genet. 10, 3075-81.

    Article  PubMed  CAS  Google Scholar 

  96. Park F (2003). Correction of bleeding diathesis without liver toxicity using arenaviral-pseudotyped HIV-1-based vectors in hemophilia A mice. Hum. Gene Ther. 14, 1489-94.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is supported in part by the Indiana Genomics Initiative (INGEN). Indiana University is the site of the NHLBI Gene Therapy Resources Program (HHSN26820078204) and the NCRR National Gene Vector Biorepository (P40 RR024928).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Cornetta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bischof, D., Cornetta, K. (2010). Flexibility in Cell Targeting by Pseudotyping Lentiviral Vectors. In: Federico, M. (eds) Lentivirus Gene Engineering Protocols. Methods in Molecular Biology, vol 614. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-533-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-533-0_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-532-3

  • Online ISBN: 978-1-60761-533-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics