Advanced Methods in Twin Studies

  • Jaakko Kaprio
  • Karri Silventoinen
Part of the Methods in Molecular Biology book series (MIMB, volume 713)


While twin studies have been used to estimate the heritability of different traits and disorders since the beginning of the twentieth century, statistical developments over the past 20 years and more extensive and systematic data collection have greatly expanded the scope of twin studies. This chapter reviews selected possibilities of twin study designs to address specific hypotheses regarding the role of both genetic and environmental factors in the development of traits and diseases. In addition to modelling latent genetic influences, current models permit inclusion of information on specific genetic variants, measured environmental factors and their interactive effects. Examples from studies of anthropometric traits are used to illustrate such approaches.

Key words

Quantitative genetics Twins Models Behaviour genetics Obesity Longitudinal studies 


  1. 1.
    Posthuma D, Beem AL, De Geus EJ, van Baal GC, von Hjelmborg JB, Iachine I et al. Theory and practice in quantitative genetics. Twin Res 2003; 6(5):361–376.PubMedGoogle Scholar
  2. 2.
    Silventoinen K, Kaprio J, Lahelma E, Koskenvuo M. Relative effect of genetic and environmental factors on body height: differences across birth cohorts among Finnish men and women. Am J Public Health 2000; 90(4):627–630.PubMedCrossRefGoogle Scholar
  3. 3.
    Schousboe K, Willemsen G, Kyvik KO, Mortensen J, Boomsma DI, Cornes BK et al. Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries. Twin Res 2003; 6(5):409–421.PubMedGoogle Scholar
  4. 4.
    Suviolahti E, Oksanen LJ, Ohman M, Cantor RM, Ridderstrale M, Tuomi T et al. The SLC6A14 gene shows evidence of association with obesity. J Clin Invest 2003; 112(11):1762–1772.PubMedGoogle Scholar
  5. 5.
    Purcell S. Variance components models for gene-environment interaction in twin analysis. Twin Res 2002; 5(6):554–571.PubMedGoogle Scholar
  6. 6.
    Purcell S, Sham P. Variance components models for gene-environment interaction in quantitative trait locus linkage analysis. Twin Res 2002; 5(6):572–576.PubMedGoogle Scholar
  7. 7.
    Mustelin L, Silventoinen K, Pietiläinen K, Rissanen A, Kaprio J. Physical activity reduces the influence of genetic effects on BMI and waist circumference: a study in young adult twins. Int J Obes (Lond) 2009; 33(1):29–36.CrossRefGoogle Scholar
  8. 8.
    Dick DM, Pagan JL, Viken R, Purcell S, Kaprio J, Pulkkinen L et al. Changing environmental influences on substance use across development. Twin Res Hum Genet 2007; 10(2):315–326.PubMedCrossRefGoogle Scholar
  9. 9.
    Dick DM, Viken R, Purcell S, Kaprio J, Pulkkinen L, Rose RJ. Parental monitoring moderates the importance of genetic and environmental influences on adolescent smoking. J Abnorm Psychol 2007; 116(1):213–218.PubMedCrossRefGoogle Scholar
  10. 10.
    Laitala V, Kaprio J, Silventoinen K. Genetics of coffee consumption and its stability. Addiction 2008; 103(12):2054–2061.PubMedCrossRefGoogle Scholar
  11. 11.
    Boomsma DI, Molenaar PCM. Constrained maximum likelihood analysis of familial resemblance of twins and their parents. Acta Genet Med Gemellol 1987; 36:29–39.PubMedGoogle Scholar
  12. 12.
    Silventoinen K, Pietiläinen KH, Tynelius P, Sorensen TI, Kaprio J, Rasmussen F. Genetic regulation of growth from birth to 18 years of age: the Swedish young male twins study. Am J Hum Biol 2008; 20(3):292–298.PubMedCrossRefGoogle Scholar
  13. 13.
    Neale MC, Mcardle JJ. Structured latent growth curves for twin data. Twin Res 2000; 3(3):165–177.PubMedGoogle Scholar
  14. 14.
    Hjelmborg JB, Fagnani C, Silventoinen K, Mcgue M, Korkeila M, Christensen K et al. Genetic influences on growth traits of BMI: a longitudinal study of adult twins. Obesity (Silver Spring) 2008; 16(4):847–852.CrossRefGoogle Scholar
  15. 15.
    Gesell A. The methods of co-twin control. Science 1942; 95(2470):446–448.PubMedCrossRefGoogle Scholar
  16. 16.
    Fisher RA. Cancer and smoking. Nature 1958; 182:596.PubMedCrossRefGoogle Scholar
  17. 17.
    Bruder CE, Piotrowski A, Gijsbers AA, Andersson R, Erickson S, de Stahl TD et al. Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 2008; 82(3):763–771.PubMedCrossRefGoogle Scholar
  18. 18.
    Pietiläinen KH, Sysi-Aho M, Rissanen A, Seppanen-Laakso T, Yki-Järvinen H, Kaprio J et al. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects – a monozygotic twin study. PLoS One 2007; 2(2):e218.PubMedCrossRefGoogle Scholar
  19. 19.
    Pietiläinen KH, Naukkarinen J, Rissanen A, Saharinen J, Ellonen P, Keränen H et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med 2008; 5(3):e51.PubMedCrossRefGoogle Scholar
  20. 20.
    Bouchard C, Tremblay A, Desprès JP, Nadeau A, Lupien PJ, Thèriault G et al. The response to long-term overfeeding in identical twins. N Engl J Med 1990; 322:1477–1482.PubMedCrossRefGoogle Scholar
  21. 21.
    Pietiläinen KH, Rissanen A, Laamanen M, Lindholm AK, Markkula H, Yki-Jarvinen H et al. Growth patterns in young adult monozygotic twin pairs discordant and concordant for obesity. Twin Res 2004; 7(5):421–429.PubMedGoogle Scholar
  22. 22.
    Pietiläinen KH, Kaprio J, Borg P, Plasqui G, Yki-Järvinen H, Kujala UM et al. Physical inactivity and obesity: a vicious circle. Obesity (Silver Spring) 2008; 16(2):409–414.CrossRefGoogle Scholar
  23. 23.
    Hill JO, Wyatt HR. Role of physical activity in preventing and treating obesity. J Appl Physiol 2005; 99(2):765–770.PubMedCrossRefGoogle Scholar
  24. 24.
    Wisloff U, Najjar SM, Ellingsen O, Haram PM, Swoap S, Al Share Q et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 2005; 307(5708):418–420.PubMedCrossRefGoogle Scholar
  25. 25.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102(30):10604–10609.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006; 9(4):519–525.PubMedCrossRefGoogle Scholar
  27. 27.
    Gottesman II, Bertelsen A. Confirming unexpressed genotypes for schizophrenia. Risks in the offspring of Fischer’s Danish identical and fraternal discordant twins. Arch Gen Psychiatry 1989; 46(10):867–872.PubMedCrossRefGoogle Scholar
  28. 28.
    D’Onofrio BM, Turkheimer EN, Eaves LJ, Corey LA, Berg K, Solaas MH et al. The role of the children of twins design in elucidating causal relations between parent characteristics and child outcomes. J Child Psychol Psychiatry 2003; 44(8):1130–1144.PubMedCrossRefGoogle Scholar
  29. 29.
    Berg K. Variability gene effect on cholesterol at the Kidd blood group locus. Clin Genet 1988; 33:102–107.PubMedCrossRefGoogle Scholar
  30. 30.
    Leskela P, Ukkola O, Vartiainen J, Rönnemaa T, Kaprio J, Bouchard C et al. Fasting plasma total ghrelin concentrations in monozygotic twins discordant for obesity. Metabolism 2009; 58(2):174–179.PubMedCrossRefGoogle Scholar
  31. 31.
    Boomsma D, Busjahn A, Peltonen L. Classical twin studies and beyond. Nat Rev Genet 2002; 3(11):872–882.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jaakko Kaprio
    • 1
  • Karri Silventoinen
    • 2
  1. 1.Department of Public Health and Institute of Molecular MedicineUniversity of Helsinki & National Institute for Health and WelfareHelsinkiFinland
  2. 2.Departments of Sociology and Public HealthUniversity of HelsinkiHelsinkiFinland

Personalised recommendations