Skip to main content

Protein Structure Modeling with MODELLER

  • Protocol

Part of the Methods in Molecular Biology™ book series (MIMB,volume 426)

Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. This chapter presents an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of similar protcols has resulted in models of useful accuracy for domains in more than half of all known protein sequences.

Keywords

  • Protein Data Bank
  • Consensus Model
  • Protein Data Bank Code
  • Multiple Template
  • Multiple Structure Alignment

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-058-8_8
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-058-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Baker, D., and Sali, A. (2001) Protein structure prediction and structural genomics. Science 294, 93–96.

    CrossRef  CAS  PubMed  Google Scholar 

  2. Pieper, U., Eswar, N., Davis, F. P., Braberg, H., Madhusudhan, M. S., Rossi, A., Marti-Renom, M., Karchin, R., Webb, B. M., Eramian, D., Shen, M. Y., Kelly, L., Melo, F., and Sali, A. (2006) MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 34, D291–295.

    CrossRef  CAS  PubMed  Google Scholar 

  3. Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000) Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Fiser, A., Do, R. K., and Sali, A. (2000) Modeling of loops in protein structures. Protein Sci. 9, 1753–1773.

    CrossRef  CAS  PubMed  Google Scholar 

  5. Sali, A., and Blundell, T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Eswar, N., Madhusudhan, M.S., Marti-Renom, M.A., Sali, A. (2005) BUILD_ PROFILE: a module for calculating sequence profiles in MODELLER. http://www.salilab.org/modeller

  7. Marti-Renom, M. A., Madhusudhan, M. S., and Sali, A. (2004) Alignment of protein sequences by their profiles. Prot. Sci. 13, 1071–1087.

    CrossRef  CAS  Google Scholar 

  8. Eswar, N., Madhusudhan, M.S., Marti-Renom, M.A., Sali, A. (2005) PROFILE_ SCAN: A module for fold-assignment using profile-profile scanning in MODELLER. http://www.salilab.org/modeller

  9. Madhusudhan, M. S., Marti-Renom, M. A., Sanchez, R., and Sali, A. (2006) Variable gap penalty for protein sequence-structure alignment. Protein Eng. Des. Sel. 19, 129–133.

    CrossRef  CAS  PubMed  Google Scholar 

  10. MacKerell, A. D., Jr., Bashford, D., Bellott, M., Dunbrack, R. L., Jr., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Muczera, K., Lau, F. T. K., Mattos, C., Michnik, S., Nguyen, D. T., Ngo, T., Prodhom, B., reiher, W. E., III, Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M. (1998) All-atom empirical potential for molecular modleing and dynamics studies of proteins. J.Phys.Chem.B. 102, 3586–3616.

    CrossRef  CAS  Google Scholar 

  11. Sali, A., and Overington, J. P. (1994) Derivation of rules for comparative protein modeling from a database of protein structure alignments. Protein Sci 3, 1582–1596.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Shen, M. Y., and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524.

    CrossRef  CAS  PubMed  Google Scholar 

  13. Wu, G., Fiser, A., ter Kuile, B., Sali, A., and Muller, M. (1999) Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc. Natl. Acad. Sci. USA 96, 6285–6290.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Deshpande, N., Addess, K. J., Bluhm, W. F., Merino-Ott, J. C., Townsend-Merino, W., Zhang, Q., Knezevich, C., Xie, L., Chen, L., Feng, Z., Green, R. K., Flippen-Anderson, J. L., Westbrook, J., Berman, H. M., and Bourne, P. E. (2005) The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res. 33, D233–237.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Smith, T. F., and Waterman, M. S. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

    CrossRef  CAS  PubMed  Google Scholar 

  16. Needleman, S. B., and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.

    CrossRef  CAS  PubMed  Google Scholar 

  17. Madhusudhan, M. S., Eswar, N., Marti-Renom, M.A., Sali, A. (2005) SALIGN: A module for multiple sequence/structure alignments in MODELLER. http://www.salilab.org/modeller

  18. John, B., and Sali, A. (2003) Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res. 31, 3982–3992.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Melo, F., Sanchez, R., and Sali, A. (2002) Statistical potentials for fold assessment. Protein Sci. 11, 430–448.

    CrossRef  CAS  PubMed  Google Scholar 

  20. Rost, B. (1999) Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94.

    CrossRef  CAS  PubMed  Google Scholar 

  21. May, A. C. (2004) Percent sequence identity; the need to be explicit. Structure 12, 737–738.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Pearson, W. R. (1998) Empirical statistical estimates for sequence similarity searches. J. Mol. Biol. 276, 71–84.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Henikoff, S., and Henikoff, J. G. (1992) Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Zhou, H., and Zhou, Y. (2005) Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins 58, 321–328.

    CrossRef  CAS  PubMed  Google Scholar 

  26. McGuffin, L. J., and Jones, D. T. (2003) Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19, 874–881.

    CrossRef  CAS  PubMed  Google Scholar 

  27. Karchin, R., Cline, M., Mandel-Gutfreund, Y., and Karplus, K. (2003) Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51, 504–514.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Shi, J., Blundell, T. L., and Mizuguchi, K. (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310, 243–257.

    CrossRef  CAS  PubMed  Google Scholar 

  29. Dunbrack, R. L., Jr. (2006) Sequence comparison and protein structure prediction. Curr. Opin. Struct. Biol. 16, 374–384.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Xiang, Z. (2006) Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 7, 217–227.

    CrossRef  CAS  PubMed  Google Scholar 

  31. Sanchez, R., and Sali, A. (1997) Advances in comparative protein-structure modelling. Curr. Opin. Struct. Biol. 7, 206–214.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Eramian, D., Shen, M. Y., Devos, D., Melo, F., Sali, A., and Marti-Renom, M. A. (2006) A composite score for predicting errors in protein structure models. Protein Sci. 15, 1653–1666.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., and Friesner, R. A. (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55, 351–367.

    CrossRef  CAS  PubMed  Google Scholar 

  34. Fernandez-Fuentes, N., Oliva, B., and Fiser, A. (2006) A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucleic Acids Res. 34, 2085–2097.

    CrossRef  CAS  PubMed  Google Scholar 

  35. Zhu, K., Pincus, D. L., Zhao, S., and Friesner, R. A. (2006) Long loop prediction using the protein local optimization program. Proteins 65, 438–452.

    CrossRef  CAS  PubMed  Google Scholar 

  36. Coutsias, E. A., Seok, C., Jacobson, M. P., and Dill, K. A. (2004) A kinematic view of loop closure. J. Comput. Chem. 25, 510–528.

    CrossRef  CAS  PubMed  Google Scholar 

  37. van Vlijmen, H. W., and Karplus, M. (1997) PDB-based protein loop prediction: parameters for selection and methods for optimization. J. Mol. Biol. 267, 975–1001.

    CrossRef  PubMed  Google Scholar 

  38. Sanchez, R., Sali, A. (1997) Evaluation of comparative protein structure modeling by MODELLER-3. Proteins 1, 50–58.

    CrossRef  PubMed  Google Scholar 

  39. Srinivasan, N., and Blundell, T. L. (1993) An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng. 6, 501–512.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Sanchez, R., Sali, A. (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc. Natl. Acad. Sci. USA 95, 13597–13602.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Chothia, C., and Lesk, A. M. (1986) The relation between the divergence of sequence and structure in proteins. Embo. J. 5, 823–826.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Eswar, N., Eramian, D., Webb, B., Shen, MY., Sali, A. (2008). Protein Structure Modeling with MODELLER. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols