Skip to main content

Overview of the Pipeline for Structural and Functional Characterization of Macrophage Proteins at the University of Queensland

  • Protocol
Structural Proteomics

This chapter describes the methodology adopted in a project aimed at structural and functional characterization of proteins that potentially play an important role in mammalian macrophages. The methodology that underpins this project is applicable to both small research groups and larger structural genomics consortia. Gene products with putative roles in macrophage function are identified using gene expression information obtained via DNA microarray technology. Specific targets for structural and functional characterization are then selected based on a set of criteria aimed at maximizing insight into function. The target proteins are cloned using a modification of Gateway® cloning technology, expressed with hexa-histidine tags in E. coli, and purified to homogeneity using a combination of affinity and size exclusion chromatography. Purified proteins are finally subjected to crystallization trials and/or NMR-based screening to identify candidates for structure determination. Where crystallography and NMR approaches are unsuccessful, chemical cross-linking is employed to obtain structural information. This resulting structural information is used to guide cell biology experiments to further investigate the cellular and molecular function of the targets in macrophage biology. Jointly, the data sheds light on the molecular and cellular functions of macrophage proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Burley, S. K. (2000) An overview of structural genomics. Nat. Struct. Biol. 7, 932–934.

    Article  CAS  PubMed  Google Scholar 

  2. Chandonia, J. M., and Brenner, S. E. (2006) The impact of structural genomics: expectations and outcomes. Science 311, 347–351.

    Article  CAS  PubMed  Google Scholar 

  3. Gordon, S., Crocker, P. R., Morris, L., Lee, S. H., Perry, V. H., and Hume, D. A. (1986) Localization and function of tissue macrophages. Ciba Found. Symp. 118, 54–67.

    CAS  PubMed  Google Scholar 

  4. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A., and Ezekowitz, R. A. (1999) Phylogenetic perspectives in innate immunity. Science 284, 1313–1318.

    Article  CAS  PubMed  Google Scholar 

  5. Mammen, E. F. (2000) Disseminated intravascular coagulation (DIC). Clin. Lab. Sci. 13, 239–245.

    CAS  PubMed  Google Scholar 

  6. Morley, J. E., Thomas, D. R., and Wilson, M. M. (2006) Cachexia: pathophysiology and clinical relevance. Am. J. Clin. Nutr. 83, 735–743.

    CAS  PubMed  Google Scholar 

  7. Duffield, J. S. (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin. Sci. (Lond.) 104, 27–38.

    Article  CAS  Google Scholar 

  8. Puri, M., Robin, G., Cowieson, N., Forwood, J. K., Listwan, P., Hu, S. H., Guncar, G., Huber, T., Kellie, S., Hume, D. A., Kobe, B., and Martin, J. L. (2006) Focusing in on structural genomics: the University of Queensland structural biology pipeline. Biomol. Eng. 23, 281–289.

    Article  CAS  PubMed  Google Scholar 

  9. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

    Article  CAS  PubMed  Google Scholar 

  10. Fleming, K., Kelley, L. A., Islam, S. A., MacCallum, R. M., Muller, A., Pazos, F., and Sternberg, M. J. (2006) The proteome: structure, function and evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 441–451.

    Article  CAS  PubMed  Google Scholar 

  11. Shi, J. B. T., and Mizuguchi K. (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure- dependent gap penalties. J. Mol. Biol. 310, 243–257.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Y., Yu, P., Luo, J., and Jiang, Y. (2003) Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm. Genome 14, 859–865.

    Article  CAS  PubMed  Google Scholar 

  13. Bono, H., Kasukawa, T., Furuno, M., Hayashizaki, Y., and Okazaki, Y. (2002) FANTOM DB: database of Functional Annotation of RIKEN Mouse cDNA Clones. Nucleic Acids Res. 30, 116–118.

    Article  CAS  PubMed  Google Scholar 

  14. Yokoyama, S. (2003) Protein expression systems for structural genomics and pro-teomics. Curr. Opin. Chem. Biol. 7, 39–43.

    Article  CAS  PubMed  Google Scholar 

  15. Listwan, P., Cowieson, N., Kurz, M., Hume, D. A., Martin, J. L., and Kobe, B. (2005) Modification of recombinatorial cloning for small affinity tag fusion protein construct generation. Anal. Biochem 346, 327–329.

    Article  CAS  PubMed  Google Scholar 

  16. Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234.

    Article  CAS  PubMed  Google Scholar 

  17. Gilbert, M., and Albala, J. S. (2002) Accelerating code to function: sizing up the protein production line. Curr. Opin. Chem. Biol. 6, 102–105.

    Article  CAS  PubMed  Google Scholar 

  18. Moy, S., Dieckman, L., Schiffer, M., Maltsev, N., Yu, G. X., and Collart, F. R. (2004) Genome-scale expression of proteins from Bacillus subtilis. J. Struct. Funct. Genomics 5, 103–109.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, R. Y., Boulton, S. J., Vidal, M., Almo, S. C., Bresnick, A. R., and Chance, M. R. (2003) High throughput expression, purification, and characterization of recombinant Caenorhabditis elegans proteins. Biochem. Biophys. Res. Commun. 307, 928–934.

    Article  CAS  PubMed  Google Scholar 

  20. Christendat, D., Yee, A., Dharamsi, A., Kluger, Y., Gerstein, M., Arrowsmith, C. H., and Edwards, A. M. (2000) Structural proteomics: prospects for high throughput sample preparation. Prog. Biophys. Mol. Biol. 73, 339–345.

    Article  CAS  PubMed  Google Scholar 

  21. Cowieson, N. P., Wensley, B., Listwan, P., Hume, D. A., Kobe, B., and Martin, J. L. (2006) An automatable screen for the rapid identification of proteins amenable to refolding. Proteomics 6, 1750–1757.

    Article  CAS  PubMed  Google Scholar 

  22. Miles, A. J., and Wallace, B. A. (2006) Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem. Soc. Rev. 35, 39–51.

    Article  CAS  PubMed  Google Scholar 

  23. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 227–293.

    Article  Google Scholar 

  24. Page, R., Grzechnik, S. K., Canaves, J. M., Spraggon, G., Kreusch, A., Kuhn, P., Stevens, R. C., and Lesley, S. A. (2003) Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against the Thermotoga maritima proteome. Acta Crystallogr. D Biol. Crystallogr. 59, 1028–1037.

    Article  PubMed  Google Scholar 

  25. Majeed, S., Ofek, G., Belachew, A., Huang, C. C., Zhou, T., and Kwong, P. D. (2003) Enhancing protein crystallization through precipitant synergy. Structure 11, 1061–1070.

    Article  CAS  PubMed  Google Scholar 

  26. Senger, A. B., and Mueser, T. C. (2005) A method for the rapid preparation of cus tom grid-screen crystallization trays using standardized pipetting maps is presented. J. Appl. Cryst. 38, 847–850.

    Article  CAS  Google Scholar 

  27. Hendrickson, W. (1999) Maturation of MAD phasing for the determination of mac-romolecular structures. J. Synchrotron. Radiat. 6, 845–851.

    Article  CAS  Google Scholar 

  28. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326.

    Article  CAS  Google Scholar 

  29. Terwilliger, T. C., and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861.

    Article  CAS  PubMed  Google Scholar 

  30. Morris, R. J., Perrakis, A., and Lamzin, V. S. (2003) ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244.

    Article  CAS  PubMed  Google Scholar 

  31. CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763.

    Article  Google Scholar 

  32. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graph ics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.

    Article  PubMed  Google Scholar 

  33. Aagaard, A., Listwan, P., Cowieson, N., Huber, T., Ravasi, T., Wells, C. A., Flanagan, J. U., Kellie, S., Hume, D. A., Kobe, B., and Martin, J. L. (2005) An inflammatory role for the mammalian carboxypeptidase inhibitor latexin: relation ship to cystatins and the tumor suppressor TIG1. Structure 13, 309–317.

    Article  CAS  PubMed  Google Scholar 

  34. Forwood, J. K., Thakur, A. S., Guncar, G., Marfori, M., Mouradov, D., Meng, W., Robinson, J., Huber, T., Kellie, S., Martin, J. L., Hume, D. A., and Kobe, B. (2007) Structural basis for recruitment of tandem hotdog domains in acyl-CoA thioesterase 7 and its role in inflammation. Proc. Natl. Acad. Sci. U.S.A. 104, 10382–10387.

    Article  CAS  PubMed  Google Scholar 

  35. Hunt, M. C., and Alexson, S. E. (2002) The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog. Lipid Res. 41, 99–130.

    Article  CAS  PubMed  Google Scholar 

  36. Faergeman, N. J., and Knudsen, J. (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem. J. 323, 1–12.

    CAS  PubMed  Google Scholar 

  37. Yamada, J. (2005) Long-chain acyl-CoA hydrolase in the brain. Amino Acids 28, 273–278.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Australian Research Council (ARC; to JLM and BK). BK is an ARC Federation Fellow and a National Health and Medical Research Council (NHMRC) Honorary Research Fellow. JMH is the recipient of an RD Wright Biomedical Career Development Award from the NHMRC. MP thanks DEST for the Australia-Asia Fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Meng, W. et al. (2008). Overview of the Pipeline for Structural and Functional Characterization of Macrophage Proteins at the University of Queensland. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_38

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics