Skip to main content

Ultrarapid Electrophoretic Transfer of High and Low Molecular Weight Proteins Using Heat

  • Protocol
  • First Online:
Protein Blotting and Detection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 536))

Summary

An ultrarapid method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70–75°C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7% (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5% gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5% gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurien, B.T., and Scofield, R.H. (1997) Multiple immunoblots after non-electrophoretic bidirectional transfer of a single SDS-PAGE gel with multiple antigens. J Immunol Methods 205, 91–94.

    Article  PubMed  CAS  Google Scholar 

  2. Peferoen, M., Huybrechts, R., and De Loof, A. (1982) Vacuum-blotting: a new simple and efficient transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to NC. FEBS Lett 145, 369–372.

    Article  CAS  Google Scholar 

  3. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to NC sheets: procedure and applications. Proc Natl Acad Sci USA 76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  4. Kurien, B.T., and Scofield, R.H. (2000) Association of neutropenia in systemic lupus erythematosus with anti-Ro and binding of an immunologically cross-reactive neutrophil membrane antigen. Clin Exp Immunol 120, 209–217.

    Article  PubMed  CAS  Google Scholar 

  5. Kurien, B.T., Matsumoto, H., and Scofield, R.H. (2001) Purification of tryptic peptides for mass spectrometry using polyvinylidene fluoride membrane. Indian J Biochem Biophys 38, 274–276.

    PubMed  CAS  Google Scholar 

  6. Bolt, M.W., and Mahoney, P.A. (1997) High efficiency blotting of proteins of diverse sizes following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 247, 185–192.

    Article  PubMed  CAS  Google Scholar 

  7. Otter, T., King, S.M., and Witman, G.B. (1987) A two-step procedure for efficient electrotransfer of both high-molecular weight (greater than 400,000) and low-molecular weight (less than 20,000) proteins. Anal Biochem 162, 370–377.

    Article  PubMed  CAS  Google Scholar 

  8. Deutscher, S.L., Harley, J.B., and Keene, J.D. (1988) Molecular analysis of the 60 kD human Ro ribonucleoprotein. Proc Natl Acad Sci USA 85, 9479–9483.

    Article  PubMed  CAS  Google Scholar 

  9. Kurien, B.T., and Scofield, R.H. (2002) Heat mediated, ultra-rapid electrophoretic transfer of high and low molecular weight proteins to NC membranes. J Immunol Methods 266, 127–133.

    Article  PubMed  CAS  Google Scholar 

  10. Ben-Chetrit, E., Gandy, B.J., Tan, E.M., and Sullivan, K.F. (1989) Isolation and characterization of a cDNA clone encoding the 60 kDa component of the human SS-A/Ro ribonucleoprotein autoantigen. J Clin Invest 83, 1284–1292.

    Article  PubMed  CAS  Google Scholar 

  11. Laemmli, U.K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant ARO1844 and Oklahoma Center for the Advancement of Science and Technology to RHS. We also express our thanks to Samantha Ganick for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biji T. Kurien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kurien, B.T., Scofield, R.H. (2009). Ultrarapid Electrophoretic Transfer of High and Low Molecular Weight Proteins Using Heat. In: Kurien, B., Scofield, R. (eds) Protein Blotting and Detection. Methods in Molecular Biology, vol 536. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-542-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-542-8_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-73-2

  • Online ISBN: 978-1-59745-542-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics