Skip to main content

Blotting from PhastGel to Membranes by Ultrasound

  • Protocol
  • First Online:
Protein Blotting and Detection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 536))

Summary

Ultrasound-based approach for enhanced protein blotting is proposed. Three minutes of ultrasound exposure (1 MHz, 2.5 W/cm2) was sufficient for a clear transfer of proteins from a polyacrylamide gel (PhastGel) to nitrocellulose or Nylon 66 Biotrans membrane. The proteins evaluated were prestained sodium dodecyl sulfate-polyacrylamide standards (18,500–106,000 Da) and 14C-labeled Rainbow protein molecular weight markers (14,300–200,000 Da).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore, C., and Promes, S. B. (2004) Ultrasound in pregnancy, Emerg Med Clin North Am 22, 697–722.

    Article  PubMed  Google Scholar 

  2. Mitragotri, S. (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic applications, Nat Rev Drug Discov 4, 255–260.

    Article  PubMed  CAS  Google Scholar 

  3. Suslick, K. S. (1998) Ultrasound: its chemical, physical and biological effects, VCH, New York, NY.

    Google Scholar 

  4. Mason, J. T. (1998) Chemistry with ultrasound, Elsevier, London.

    Google Scholar 

  5. Povey, M. J. W., and Mason, T. J. (1998) Ultrasound in food processing, Blackie, London.

    Google Scholar 

  6. Williams, A. R. (1983) Ultrasound: biological effects and potential hazards, Academic, New York, NY, pp. 177–253.

    Google Scholar 

  7. Unger, E. C., McCreery, T., and Sweitzer, R. H. (1997) Ultrasound enhances gene expression of liposomal transfection, Invest Radiol 32, 723–727.

    Article  PubMed  CAS  Google Scholar 

  8. Miller, D. L., and Song, J. (2003) Tumor growth reduction and DNA transfer by cavitation-enhanced high intensity focused ultrasound, Ultrasound Med Biol 29, 887–893.

    Article  PubMed  Google Scholar 

  9. Deshpande, M. C., and Prausnitz, M. R. (2007) Synergistic effect of ultrasound and PEI on DNA transfection in vitro, J Control Release 118, 126–135.

    Article  PubMed  CAS  Google Scholar 

  10. Joersbo, M., and Brunstedt, J. (1992) Sonication: a new method for gene transfer to plants. Physiol Plant 85, 230–234.

    Article  CAS  Google Scholar 

  11. Shroeder, A., Avnir, Y., Weisman, S., Tzemach, D., Najajreh, Y., Gabizon, A., et al. (2007) Controlling liposomal drug release by low-frequency ultrasound: mechanism and feasibility. Langmuir 23, 4019–4025.

    Article  Google Scholar 

  12. Kost, J., and Langer, R. (2001) Responsive polymeric delivery systems. Adv Drug Deliv Rev 46, 125–148.

    Article  PubMed  CAS  Google Scholar 

  13. Kost, J., Mitragotri, S., Gabbay, R., Pishko, M., and Langer, R. (2000) Non-invasive blood glucose measurement using ultrasound, Nat Med 6, 347–350.

    Article  PubMed  CAS  Google Scholar 

  14. Chisti, Y., and Moo-Young, M. (1998) Disruption of microbial cells for intracellular products. Enzyme Microb Technol 8, 194–204.

    Article  Google Scholar 

  15. Bar, R. (1998) Ultrasound-enhanced bioprocesses: cholesterol oxidation by Rhodococcus erythropolis. Biotechnol Bioeng 32, 655–663.

    Article  Google Scholar 

  16. Nyborg, W. L. (1998) Ultrasonic microstreaming and related phenomena. Br J Cancer 45, 156–160.

    Google Scholar 

  17. Zabaneh, M. and Bar, R. (1991) Ultrasound-enhanced bioprocess. II: dehydrogenation of hydrocortisone by Arthrobacter simplex. Biotechnol Bioeng 37, 998–1003.

    Article  PubMed  CAS  Google Scholar 

  18. Chisti, Y. (2003) Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends Biotechnol 21, 89–93.

    Article  PubMed  CAS  Google Scholar 

  19. Kost, J., Liu, L -S., Ferreira, J., and Langer, R. (1994) Enhanced protein blotting from PhastGel media to membranes by irradiation of low-intensity. Anal Biochem 216, 27–32.

    Article  PubMed  CAS  Google Scholar 

  20. Issaq, H. J., Atamna, I. Z., Muschil, G. M., and Janini, G. M. (1991) Chromatographia 32, 155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Kost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kost, J. (2009). Blotting from PhastGel to Membranes by Ultrasound. In: Kurien, B., Scofield, R. (eds) Protein Blotting and Detection. Methods in Molecular Biology, vol 536. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-542-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-542-8_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-73-2

  • Online ISBN: 978-1-59745-542-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics