Skip to main content

Establishing Substantial Equivalence: Transcriptomics

  • Protocol
  • First Online:
Transgenic Wheat, Barley and Oats

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 478))

Abstract

Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EvansL. T. (1993) Crop Evolution, Adaptation and Yield.Cambridge University Press,Cambridge

    Google Scholar 

  2. FAO/WHO (1996) Biotechnology and Food Safety, Report of a Joint FAO/WHO Consultation.

    Google Scholar 

  3. Wilson, I. D., Barker, G. L. A., Beswick, R. W., Shepherd, S. K., Lu, C., Coghill, J. A., Edwards, D., Owen, P., Lyons, R., Parker, J. S., Lenton, J. R., Holdsworth, M. J., Shewry, P. R. and Edwards, K. J. (2004) A transcriptomics resource for wheat functional genomics.Plant Biotechnol. J. 2, 495–506.

    Article  Google Scholar 

  4. Wilson, I. D., Barker, G. L. A., Lu, C., Coghill, J. A., Beswick, R. W., Lenton, J. R. and Edwards, K. J. (2005) Alteration of the embryo transcriptome of hexaploid winter wheat (Triticum aestivum cv.Mercia) during maturation and germination. Funct. Integ. Genomics 5, 144–154.

    Article  Google Scholar 

  5. Baudo, M. M., Lyons, R., Powers, S., Pastori, G. M., Edwards, K. J., Holdsworth, M. J. and Shewry, P. R. (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding.Plant Biotechnol. J. 4, 369–380.

    Article  CAS  Google Scholar 

  6. Barro, F., Rooke, L., Békés, F., Gras, P., Tatham, A. S., Fido, R. J., Lazzeri, P., Shewry, P. R. and Barcelo, P. (1997) Transformation of wheat with HMW subunit genes results in improved functional properties.Nat. Biotechnol. 15, 1295–1299.

    Article  CAS  Google Scholar 

  7. Rooke, L., Steele, S. H., Barcelo, P., Shewry, P. R. and Lazzeri, P. (2003) Transgene inheritance, segregation and expression in bread wheat.Euphytica 129, 301–309.

    Article  CAS  Google Scholar 

  8. Shewry, P. R., Halford, N. G., Tatham, A. S., Popineau, Y., Lafiandra, D. and Belton, P. S. (2003) The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties.Adv. Food Nutr. Res. 45, 221–302.

    Google Scholar 

  9. Lawrence, G. J., Macritchie, F. and Wrigley, C. W. (1998) Dough and baking quality of wheat lines in glutenin subunits controlled by Glu-A1, Glu-B1 and Glu-D1 loci.J. Cereal Sci. 7, 109–112.

    Article  Google Scholar 

  10. Shewry, P. R., Tatham, A. S. and Fido, R. J. (1995) Plant Gene Transfer and Expression Protocols: Separation of Plant Proteins by Electrophoresis, Vol. 49. Humana, Totowa.

    Google Scholar 

  11. Chang, S., Puryear, J. and Cairney, J. A. (1993) Simple and efficient method for isolating RNA from pine trees.Plant Mol. Biol. Rep. 11, 113–116.

    Article  CAS  Google Scholar 

  12. Cheng, G. P., Wilson, I. D., Kim, S. H. and Grierson, D. (2001) Inhibiting expression of a tomato ripening-associated membrane protein increases organic acids and reduces sugar levels of fruit.Planta 212, 799–807.

    Article  Google Scholar 

  13. Halford, N. G., Field, J. M., Blair, H., Urwin, P., Moore, K., Robert, L., Thompson, R., Flavell, R. B., Tatham, A. S. and Shewry, P. R. (1992) Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality.Theor. Appl. Genet. 83, 373–378.

    Article  CAS  Google Scholar 

  14. Christensen, A. H. and Quail, P. H. (1996) Ubiquitin promotor-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants.Transgen. Res. 5, 213–218.

    Article  CAS  Google Scholar 

  15. Kerr, M. K. (2003) Linear models for microarray data analysis: hidden similarities and differences.J. Comput. Biol. 10, 891–901.

    Article  CAS  Google Scholar 

  16. Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns.P.N.A.S. USA 95, 14863–14868.

    Article  CAS  Google Scholar 

  17. Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U. and Speed, T. P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data.Biostatistics 4, 249–264.

    Article  Google Scholar 

  18. Wu, Z. J., Irizarry, R. A., Gentleman, R., Martinez-Murillo, F. and Spencer, F. (2004) A model-based background adjustment for oligonucleotide expression arrays.J. Am. Stat. Assoc. 99, 909–917.

    Article  Google Scholar 

  19. Choe, S. E., Boutros, M., Michelson, A. M., Church, G. M. and Halfon, M. S. (2005) Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol. 6, Artn r16.

    Google Scholar 

  20. Qin, L. X., Beyer, R. P., Hudson, F. N., Linford, N. J., Morris, D. E. and Kerr, K. F. (2006) Evaluation of methods for oligonucleotide array data via quantitative real-time PCR. Bioinformatics 7, Artn 23.

    Google Scholar 

  21. Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing.J. Royal Stat. Soc. Ser. B-Methodological 57, 289–300.

    Google Scholar 

  22. Bustin, S. A. (2004) A-Z of Quantitative PCR: Quantification Strategies in Real-Time PCR. IUL Biotechnology Series, Int. Univ. Line, La Jolla.

    Google Scholar 

  23. ABI-Prisma (2001) 7700 Sequence Detection System: Relative Quantification, Vol. 2.

    Google Scholar 

  24. Pfaffl, M. W. (2001) A new mathematical method for relative quantification in real-time RT-PCR.Nucleic Acids Res. 29, 2003–2007.

    Article  Google Scholar 

  25. Ramakers, C., Ruijter, J. M., Lekanne Deprez, R. H. and Moorman, A. F. M. (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data.Neurosci. Lett. 339, 62–69.

    Article  CAS  Google Scholar 

  26. Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, R., Coulson, R., Farne, A., Holloway, E., Kolesnykov, N., Lilja, P., Lukk, M., Mni, R., Rayner, T., Sharma, A., William, E., Sarkans, U. and Brazma, A. (2006) ArrayExpress- a public database of microarray experiments and gene expression profiles. Nucleic Acid Res. doi:10.1093/nar/gkl995.

    Google Scholar 

  27. Patterson, H. D., and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal.Biometrika 58, 545–554.

    Article  Google Scholar 

  28. Welham, S. J., and Thompson, R. (1997). Likelihood ratio tests for fixed model terms using residual maximum likelihood.J. Royal Stat. Soc. Ser B 59, 701–714.

    Article  Google Scholar 

  29. Burgueño, J., Crossa, J., Grimanelli, D., Leblanc, O. and Autran, D. (2005) Spatial analysis of cDNA microarray experiments.Crop Sci. 45, 748–757.

    Article  Google Scholar 

  30. Baird, D., Johnston, P. and Wilson, T. (2004) Normalisation of microarray data using a spatial mixed model analysis which includes splines.Bioinformatics 20, 3196–3205.

    Article  CAS  Google Scholar 

  31. Smyth, G. K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3.

    Google Scholar 

  32. Newton, M. A., Noueiry, A., Sarkar, D. and Ahlquist, P. (2004) Detecting differential gene expression with a semiparametric hierarchical mixture method.Biostatistics 5, 155–176.

    Article  Google Scholar 

  33. Khondoker, M. R., Glasbey, C. A. and Worton, B. J. (2006) Statistical estimation of gene expression using multiple laser scans of microarrays.Bioinformatics 22, 215–219.

    Article  CAS  Google Scholar 

  34. Allison, D. B., Gadbury, G. L., Heo, M., Fernández, J. R., Lee, C. -K., Prolla, T. A. and Weindruch, R. (2002) A mixture model approach for the analysis of microarray gene data. Comput.Stat. Data Anal. 39, 1–20.

    Article  Google Scholar 

  35. Cui, X., Gene-Hwang, J. T., Qui, J., Blades, N. J. and Churchill, G. A. (2003) Improved statistical tests for differential gene expression by shrinking variance components estimates.Biostatistics 6, 59–75.

    Article  Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the UK. The transcriptomic studies were supported by a grant under the BBSRC, Gene Flow Initiative (ref. GM 14152). The authors would like to thank Mr. Adrian Price at Rothamsted Research for discussions of methods for microarray data analysis. We also acknowledge our colleagues Prof. Michael Holdsworth (University of Nottingham), Prof. Keith Edwards (University of Bristol), Ms. Rebecca Lyons, and Dr. Gabriela M. Pastori (Rothamsted Research).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Baudo*, M., Powers, S., Mitchell, R., Shewry, P. (2009). Establishing Substantial Equivalence: Transcriptomics. In: Jones, H., Shewry, P. (eds) Transgenic Wheat, Barley and Oats. Methods in Molecular Biology™, vol 478. Humana Press. https://doi.org/10.1007/978-1-59745-379-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-379-0_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-961-1

  • Online ISBN: 978-1-59745-379-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics