Advertisement

Establishing Substantial Equivalence: Transcriptomics

  • María Marcela Baudo*
  • Stephen J. Powers
  • Rowan A. C. Mitchell
  • Peter R. Shewry
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 478)

Abstract

Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.

Key Words:

Bread wheat transgenics transcriptomics transgene expression substantial equivalence gluten proteins 

Notes

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the UK. The transcriptomic studies were supported by a grant under the BBSRC, Gene Flow Initiative (ref. GM 14152). The authors would like to thank Mr. Adrian Price at Rothamsted Research for discussions of methods for microarray data analysis. We also acknowledge our colleagues Prof. Michael Holdsworth (University of Nottingham), Prof. Keith Edwards (University of Bristol), Ms. Rebecca Lyons, and Dr. Gabriela M. Pastori (Rothamsted Research).

References

  1. 1.
    EvansL. T. (1993) Crop Evolution, Adaptation and Yield.Cambridge University Press,CambridgeGoogle Scholar
  2. 2.
    FAO/WHO (1996) Biotechnology and Food Safety, Report of a Joint FAO/WHO Consultation.Google Scholar
  3. 3.
    Wilson, I. D., Barker, G. L. A., Beswick, R. W., Shepherd, S. K., Lu, C., Coghill, J. A., Edwards, D., Owen, P., Lyons, R., Parker, J. S., Lenton, J. R., Holdsworth, M. J., Shewry, P. R. and Edwards, K. J. (2004) A transcriptomics resource for wheat functional genomics.Plant Biotechnol. J. 2, 495–506.CrossRefGoogle Scholar
  4. 4.
    Wilson, I. D., Barker, G. L. A., Lu, C., Coghill, J. A., Beswick, R. W., Lenton, J. R. and Edwards, K. J. (2005) Alteration of the embryo transcriptome of hexaploid winter wheat (Triticum aestivum cv.Mercia) during maturation and germination. Funct. Integ. Genomics 5, 144–154.CrossRefGoogle Scholar
  5. 5.
    Baudo, M. M., Lyons, R., Powers, S., Pastori, G. M., Edwards, K. J., Holdsworth, M. J. and Shewry, P. R. (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding.Plant Biotechnol. J. 4, 369–380.CrossRefGoogle Scholar
  6. 6.
    Barro, F., Rooke, L., Békés, F., Gras, P., Tatham, A. S., Fido, R. J., Lazzeri, P., Shewry, P. R. and Barcelo, P. (1997) Transformation of wheat with HMW subunit genes results in improved functional properties.Nat. Biotechnol. 15, 1295–1299.CrossRefGoogle Scholar
  7. 7.
    Rooke, L., Steele, S. H., Barcelo, P., Shewry, P. R. and Lazzeri, P. (2003) Transgene inheritance, segregation and expression in bread wheat.Euphytica 129, 301–309.CrossRefGoogle Scholar
  8. 8.
    Shewry, P. R., Halford, N. G., Tatham, A. S., Popineau, Y., Lafiandra, D. and Belton, P. S. (2003) The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties.Adv. Food Nutr. Res. 45, 221–302.Google Scholar
  9. 9.
    Lawrence, G. J., Macritchie, F. and Wrigley, C. W. (1998) Dough and baking quality of wheat lines in glutenin subunits controlled by Glu-A1, Glu-B1 and Glu-D1 loci.J. Cereal Sci. 7, 109–112.CrossRefGoogle Scholar
  10. 10.
    Shewry, P. R., Tatham, A. S. and Fido, R. J. (1995) Plant Gene Transfer and Expression Protocols: Separation of Plant Proteins by Electrophoresis, Vol. 49. Humana, Totowa.Google Scholar
  11. 11.
    Chang, S., Puryear, J. and Cairney, J. A. (1993) Simple and efficient method for isolating RNA from pine trees.Plant Mol. Biol. Rep. 11, 113–116.CrossRefGoogle Scholar
  12. 12.
    Cheng, G. P., Wilson, I. D., Kim, S. H. and Grierson, D. (2001) Inhibiting expression of a tomato ripening-associated membrane protein increases organic acids and reduces sugar levels of fruit.Planta 212, 799–807.CrossRefGoogle Scholar
  13. 13.
    Halford, N. G., Field, J. M., Blair, H., Urwin, P., Moore, K., Robert, L., Thompson, R., Flavell, R. B., Tatham, A. S. and Shewry, P. R. (1992) Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality.Theor. Appl. Genet. 83, 373–378.CrossRefGoogle Scholar
  14. 14.
    Christensen, A. H. and Quail, P. H. (1996) Ubiquitin promotor-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants.Transgen. Res. 5, 213–218.CrossRefGoogle Scholar
  15. 15.
    Kerr, M. K. (2003) Linear models for microarray data analysis: hidden similarities and differences.J. Comput. Biol. 10, 891–901.CrossRefGoogle Scholar
  16. 16.
    Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns.P.N.A.S. USA 95, 14863–14868.CrossRefGoogle Scholar
  17. 17.
    Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U. and Speed, T. P. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data.Biostatistics 4, 249–264.CrossRefGoogle Scholar
  18. 18.
    Wu, Z. J., Irizarry, R. A., Gentleman, R., Martinez-Murillo, F. and Spencer, F. (2004) A model-based background adjustment for oligonucleotide expression arrays.J. Am. Stat. Assoc. 99, 909–917.CrossRefGoogle Scholar
  19. 19.
    Choe, S. E., Boutros, M., Michelson, A. M., Church, G. M. and Halfon, M. S. (2005) Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol. 6, Artn r16.Google Scholar
  20. 20.
    Qin, L. X., Beyer, R. P., Hudson, F. N., Linford, N. J., Morris, D. E. and Kerr, K. F. (2006) Evaluation of methods for oligonucleotide array data via quantitative real-time PCR. Bioinformatics 7, Artn 23.Google Scholar
  21. 21.
    Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing.J. Royal Stat. Soc. Ser. B-Methodological 57, 289–300.Google Scholar
  22. 22.
    Bustin, S. A. (2004) A-Z of Quantitative PCR: Quantification Strategies in Real-Time PCR. IUL Biotechnology Series, Int. Univ. Line, La Jolla.Google Scholar
  23. 23.
    ABI-Prisma (2001) 7700 Sequence Detection System: Relative Quantification, Vol. 2.Google Scholar
  24. 24.
    Pfaffl, M. W. (2001) A new mathematical method for relative quantification in real-time RT-PCR.Nucleic Acids Res. 29, 2003–2007.CrossRefGoogle Scholar
  25. 25.
    Ramakers, C., Ruijter, J. M., Lekanne Deprez, R. H. and Moorman, A. F. M. (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data.Neurosci. Lett. 339, 62–69.CrossRefGoogle Scholar
  26. 26.
    Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, R., Coulson, R., Farne, A., Holloway, E., Kolesnykov, N., Lilja, P., Lukk, M., Mni, R., Rayner, T., Sharma, A., William, E., Sarkans, U. and Brazma, A. (2006) ArrayExpress- a public database of microarray experiments and gene expression profiles. Nucleic Acid Res. doi:10.1093/nar/gkl995.Google Scholar
  27. 27.
    Patterson, H. D., and Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal.Biometrika 58, 545–554.CrossRefGoogle Scholar
  28. 28.
    Welham, S. J., and Thompson, R. (1997). Likelihood ratio tests for fixed model terms using residual maximum likelihood.J. Royal Stat. Soc. Ser B 59, 701–714.CrossRefGoogle Scholar
  29. 29.
    Burgueño, J., Crossa, J., Grimanelli, D., Leblanc, O. and Autran, D. (2005) Spatial analysis of cDNA microarray experiments.Crop Sci. 45, 748–757.CrossRefGoogle Scholar
  30. 30.
    Baird, D., Johnston, P. and Wilson, T. (2004) Normalisation of microarray data using a spatial mixed model analysis which includes splines.Bioinformatics 20, 3196–3205.CrossRefGoogle Scholar
  31. 31.
    Smyth, G. K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3.Google Scholar
  32. 32.
    Newton, M. A., Noueiry, A., Sarkar, D. and Ahlquist, P. (2004) Detecting differential gene expression with a semiparametric hierarchical mixture method.Biostatistics 5, 155–176.CrossRefGoogle Scholar
  33. 33.
    Khondoker, M. R., Glasbey, C. A. and Worton, B. J. (2006) Statistical estimation of gene expression using multiple laser scans of microarrays.Bioinformatics 22, 215–219.CrossRefGoogle Scholar
  34. 34.
    Allison, D. B., Gadbury, G. L., Heo, M., Fernández, J. R., Lee, C. -K., Prolla, T. A. and Weindruch, R. (2002) A mixture model approach for the analysis of microarray gene data. Comput.Stat. Data Anal. 39, 1–20.CrossRefGoogle Scholar
  35. 35.
    Cui, X., Gene-Hwang, J. T., Qui, J., Blades, N. J. and Churchill, G. A. (2003) Improved statistical tests for differential gene expression by shrinking variance components estimates.Biostatistics 6, 59–75.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • María Marcela Baudo*
    • 1
  • Stephen J. Powers
    • 2
  • Rowan A. C. Mitchell
    • 1
  • Peter R. Shewry
    • 1
  1. 1.Centre for Crop Genetic Improvement, Department of Plant SciencesRothamsted ResearchHarpenden, HertfordshireUK
  2. 2.Centre for Mathematical and Computational Biology, Department of Biomathematics and BioinformaticsRothamsted ResearchHarpenden, HertfordshireUK

Personalised recommendations