Mitochondria pp 529-542 | Cite as

Plant Mitochondrial Transcriptomics by Quantitative RT-PCR

  • Rachel Clifton
  • James Whelan
Part of the Methods in Molecular Biology™ book series (MIMB, volume 372)


Transcriptomic analysis using quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) facilitates analysis of nuclear and mitochondrial-encoded mitochondrial genes, enabling mechanisms and regulation of signaling pathways to be explored. To illustrate this technique, we use genes of the mitochondrial respiratory chain. We show that several components of the mitochondrial respiratory chain respond to stress, in particular the alternative oxidase. This chapter describes a method involving total ribonucleic acid (RNA) isolation and QRT-PCR for the detection and analysis of transcriptional changes that accompany seven commonly used chemical stresses. This methodology describes an accurate technique to determine quantitatively absolute transcript levels and a platform to facilitate comparison between responses to other stress stimuli.

Key Words

Alternative respiratory pathway gene expression quantitative RT-PCR 


  1. 1.
    Chen, D., Toone, W. M., Mata, J., et al. (2003) Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell. 14, 214–229.PubMedCrossRefGoogle Scholar
  2. 2.
    Gasch, A. P., Spellman, P. T., Kao, C. M., et al. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257.PubMedGoogle Scholar
  3. 3.
    Causton, H. C., Ren, B., Koh, S. S., et al. (2001) Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323–337.PubMedGoogle Scholar
  4. 4.
    Gray, M. W., Burger, G., and Lang, B. F. (1999) Mitochondrial evolution. Science 283, 1476–1481.PubMedCrossRefGoogle Scholar
  5. 5.
    Czechowski, T., Bari, R. P., Stitt, M., Scheible, W.-R., and Udvardi, M. K. (2004) Real time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root-and shoot-specific genes. Plant J. 38, 366–379.PubMedCrossRefGoogle Scholar
  6. 6.
    Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, M., and Wisman, E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13, 113–123.PubMedCrossRefGoogle Scholar
  7. 7.
    Clifton, R., Lister, R., Parker, K. L., et al. (2005) Stress induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol. Biol. 58, 193–212.PubMedCrossRefGoogle Scholar
  8. 8.
    Sweetlove, L. J., Heazlewood, J. L., Herald, V., et al. (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J. 32, 891–904.PubMedCrossRefGoogle Scholar
  9. 9.
    Golub, T. R., Slonim, D. K., Tamayo, P., et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537.PubMedCrossRefGoogle Scholar
  10. 10.
    Tamayo, P., Slonim, D., Mesirov, J., et al. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. U. S. A. 96, 2907–2912.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Rachel Clifton
    • 1
  • James Whelan
    • 2
  1. 1.ARC Centre of Excellence in Plant Energy Biology, M316University of Western AustraliaCrawleyAustralia
  2. 2.Plant Molecular Biology Group, Biochemistry Department, School of Life and Biomedical SciencesUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations