Skip to main content

Investigation of Iron-Sulfur Protein Maturation in Eukaryotes

  • Protocol
Mitochondria

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 372))

Abstract

Iron-sulfur (Fe-S) clusters are cofactors of many proteins that are involved in central biochemical pathways, such as oxidative phosphorylation, photosynthesis, and amino acid biosynthesis. The assembly of these cofactors and the maturation of Fe-S proteins require complex cellular machineries in all kingdoms of life. In eukaryotes, Fe-S protein biogenesis is an essential process, and mitochondria perform a primary role in synthesis. Defects in Fe-S protein maturation in yeast result in respiratory deficiency and auxotrophies for certain amino acids and vitamins that require Fe-S proteins for their biosynthesis. Frequently, heme biosynthesis is also affected. The present compendium describes assays for the analysis of de novo Fe-S cluster and heme formation, cellular iron homeostasis, and the activity of Fe-S cluster- and heme-containing enzymes. These approaches are crucial to elucidate the mechanisms underlying the maturation of Fe-S proteins and may aid in the identification of new members of this evolutionary ancient process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beinert, H., Holm, R. H., and Munck, E. (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277, 653–659.

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, D. C., Dean, D. R., Smith, A. D., and Johnson, M. K. (2004) Structure, function, and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74, 247–281.

    Article  Google Scholar 

  3. Balk, J. and Lill, R. (2004) The cell’s cookbook for iron-sulfur clusters: recipes for fool’s gold? Chembiochem. 5, 1044–1049.

    Article  CAS  PubMed  Google Scholar 

  4. Lill, R. and Muhlenhoff, U. (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci. 30, 133–141.

    Article  CAS  PubMed  Google Scholar 

  5. Kispal, G., Csere, P., Prohl, C., and Lill, R. (1999) The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981–3989.

    Article  CAS  PubMed  Google Scholar 

  6. Jensen, L. T. and Culotta, V. C. (2000) Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis. Mol. Cell. Biol. 20, 3918–3927.

    Article  CAS  PubMed  Google Scholar 

  7. Kispal, G., Sipos, K., Lange, H., et al. (2005) Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J. 24, 589–598.

    Article  CAS  PubMed  Google Scholar 

  8. Yarunin, A., Panse, V. G., Petfalski, E., Dez, C., Tollervey, D., and Hurt, E. C. (2005) Functional link between ribosome formation and biogenesis of iron-sulfur proteins. EMBO J. 24, 580–588.

    Article  CAS  PubMed  Google Scholar 

  9. Lange, H., Muhlenhoff, U., Denzel, M., Kispal, G., and Lill, R. (2004) The heme synthesis defect of mutants impaired in mitochondrial iron-sulfur protein biogenesis is caused by reversible inhibition of ferrochelatase. J. Biol. Chem. 279, 29,101–29,108.

    Article  CAS  PubMed  Google Scholar 

  10. Kispal, G., Csere, P., Guiard, B., and Lill, R. (1997) The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Lett. 418, 346–350.

    Article  CAS  PubMed  Google Scholar 

  11. Rutherford, J. C., Ojeda, L., Balk, J., Muhlenhoff, U., Lill, R., and Winge, D. R. (2005) Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J. Biol. Chem. 280, 10,135–10,140.

    Article  CAS  PubMed  Google Scholar 

  12. Eisenstein, R. S. (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu. Rev. Nutr. 20, 627–662.

    Article  CAS  PubMed  Google Scholar 

  13. Muhlenhoff, U., Richhardt, N., Gerber, J., and Lill, R. (2002) Characterization of iron-sulfur protein assembly in isolated mitochondria. A requirement for ATP, NADH, and reduced iron. J. Biol. Chem. 277, 29,810–29,816.

    Article  CAS  PubMed  Google Scholar 

  14. Lutz, T., Westermann, B., Neupert, W., and Herrmann, J. M. (2001) The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria. J. Mol. Biol. 307, 815–825.

    Article  CAS  PubMed  Google Scholar 

  15. Mullner, E. W., Neupert, B., and Kuhn, L. C. (1989) A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell 58, 373–382.

    Article  CAS  PubMed  Google Scholar 

  16. Guthrie, C. and Fink, G. R. (1991) Guide to yeast genetics and molecular biology. Meth. Enzymol. 194, 1–863.

    Google Scholar 

  17. Diekert, K., de Kroon, A. I., Kispal, G., and Lill, R. (2001) Isolation and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods Cell Biol. 65, 37–51.

    Article  CAS  PubMed  Google Scholar 

  18. Muhlenhoff, U., Richhardt, N., Ristow, M., Kispal, G., and Lill, R. (2002) The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum. Mol. Genet. 11, 2025–2036.

    Article  PubMed  Google Scholar 

  19. Meyer, J., Moulis, J. M., and Lutz, M. (1986) High-yield chemical assembly of [2Fe-2X] (X = S, Se) clusters into spinach apoferredoxin: product characterisation by Raman spectroscopy. Biochim. Biophys. Acta 871, 243–249.

    Article  CAS  Google Scholar 

  20. Lange, H., Kispal, G., and Lill, R. (1999) Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J. Biol. Chem. 274, 18,989–18,996.

    Article  CAS  PubMed  Google Scholar 

  21. Li, J., Kogan, M., Knight, S. A., Pain, D., and Dancis, A. (1999) Yeast mitochondrial protein, Nfs1p, coordinately regulates iron-sulfur cluster proteins, cellular iron uptake, and iron distribution. J. Biol. Chem. 274, 33,025–33,034.

    Article  CAS  PubMed  Google Scholar 

  22. Makino, T., Kiyonaga, M., and Kina, K. (1988) A sensitive, direct colorimetric assay of serum iron using the chromogen, nitro-PAPS. Clin. Chim. Acta 171, 19–27.

    Article  CAS  PubMed  Google Scholar 

  23. O’Connell, I. A. R. a. E. L. (1967) Mechanism of aconitase action. I. The hydrogen transfer reaction. J. Biol. Chem. 242, 1870–1879.

    PubMed  Google Scholar 

  24. Drapier, J. C. and Hibbs, J. B., Jr. (1996) Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis. Meth. Enzymol. 269, 26–36.

    Article  CAS  PubMed  Google Scholar 

  25. Hausladen, A. and Fridovich, I. (1996) Measuring nitric oxide and superoxide: rate constants for aconitase reactivity. Meth. Enzymol. 269, 37–41.

    Article  CAS  PubMed  Google Scholar 

  26. Hatefi, Y. and Stiggall, D. L. (1978) Preparation and properties of succinate: ubiquinone oxidoreductase (complex II). Meth. Enzymol. 53, 21–27.

    Article  CAS  PubMed  Google Scholar 

  27. Birch-Machin, M. A. and Turnbull, D. M. (2001) Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues. Methods Cell Biol. 65, 97–117.

    Article  CAS  PubMed  Google Scholar 

  28. Ellman, G. L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77.

    Article  CAS  PubMed  Google Scholar 

  29. Siegel, L. and Englard, S. (1962) Beef-heart malic dehydrogenases. III. Comparative studies of some properties of M-malic dehydrogenase and S-malic dehydrogenase. Biochim. Biophys. Acta 64, 101–110.

    Article  CAS  PubMed  Google Scholar 

  30. Leibold, E. A., and Munro, H. N. (1988) Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5′-untranslated region of ferritin heavy-and light-subunit mRNAs. Proc. Natl. Acad. Sci. USA. 85, 2171–2175.

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi, Y., Mitsui, A., and Matsubara, H. (1991) Formation of the Fe-S cluster of ferredoxin in lysed spinach chloroplasts. Plant Physiol. 95, 97–103.

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki, S., Izumihara, K., and Hase, T. (1991) Plastid import and iron-sulphur cluster assembly of photosynthetic and nonphotosynthetic ferredoxin isoproteins in maize. Plant Physiol. 97, 375–80.

    Article  CAS  PubMed  Google Scholar 

  33. Stehling, O., Elsasser, H. P., Bruckel, B., Muhlenhoff, U., and Lill, R. (2004) Iron-sulfur protein maturation in human cells: evidence for a function of frataxin. Hum. Mol. Genet. 13, 3007–15. Epub October 27, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Stehling, O., Smith, P.M., Biederbick, A., Balk, J., Lill, R., Mühlenhoff, U. (2007). Investigation of Iron-Sulfur Protein Maturation in Eukaryotes. In: Leister, D., Herrmann, J.M. (eds) Mitochondria. Methods in Molecular Biology™, vol 372. Humana Press. https://doi.org/10.1007/978-1-59745-365-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-365-3_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-667-2

  • Online ISBN: 978-1-59745-365-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics