Skip to main content

Using SIMS and MIMS in Biological Materials

Application to Higher Plants

  • Protocol
Electron Microscopy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 369))

Abstract

Analytical imaging by secondary ion mass spectrometry allows the precise cartography of elements and isotopes at subcellular level in biological samples. Multielemental coacquisition from the same sputtered zone gives new prospects in the study of biological matrix, where many elements coexist and move according to cellular metabolism. For plant studies, localizing and quantifying compartmentations of mineral nutrients is important to understanding their metabolism. The use of stable isotopes as analogous markers is an efficient strategy of labeling for transport and metabolic studies. As for all microanalytical techniques, the stabilization of biological material is essential for the use of secondary ion mass spectrometry/multi-isotope imaging mass spectrometry microprobes. The techniques chosen are explained: decontamination, cryoprocessing, sections in embedded material (Arabidopsis thaliana, Brassicae) and analysis. In the Notes section, we will comment on the need to adapt the protocol described to the variety and complexity of the biological materials. Other proven protocols established in other laboratories for other type of organisms or biological questions will also be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Echlin, P. (1992) Low Temperature Microscopy and Analysis, Plenum Press, New York.

    Google Scholar 

  2. Michel, M., Gnäggi, H., and Müller, M. (1992) Diamonds are a cryosectioner’s best friends. J. Microsc. 166, 43–56.

    Google Scholar 

  3. Slodzian, G., Daigne, B., Girard, F., Boust, F., and Hillion, F. (1992) Scanning secondary analytical microscopy with parallel detection. Biol. Cell 74, 43–50.

    Article  CAS  PubMed  Google Scholar 

  4. Hillion, F., Daigne, B., Slodzian, G., and Schumacher, M. (1993) A new high performance SIMS instrument: the Cameca “Nanosims 50”. Proceed. SIMS IX, Yokohama, Japan, p. 254.

    Google Scholar 

  5. Harvey, D. M. R., Hall, J. L., and Flowers, T. J. (1976) The use of freeze-subtitution in the preparation of plant tissue for ion localization studies. J. Microsc. (Oxford) 107, 189–198.

    Google Scholar 

  6. Spurr, A. R. (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43.

    Article  CAS  PubMed  Google Scholar 

  7. Glass, A. D. M. (1978) Influence of excision and aging upon K+ influx into barley roots. Plant Physiol. 61, 481–483.

    Article  CAS  PubMed  Google Scholar 

  8. Steinbrecht, R. A. and Zierold, K. (eds.) (1987) Cryotechniques in Biological Electron Microscopy, Springer-Verlag, Berlin.

    Google Scholar 

  9. Benninghoven A., Rudenauer, F. G., and Werner, H. W. (1987) Secondary ion mass spectrometry, in Basic Concepts, Instrumental Aspects, Applications and Trends (Elving J. P. and Winefordner J. D., eds.), John Wiley and Sons, New York.

    Google Scholar 

  10. Blaise, G. (1978) Fundamental aspects of ion microanalysis, in Material Characterization using Ion Beams, vol. 28 (Thomas, J. P. and Cachard, A., eds.), Plenum Pub. Co., New York, pp. 143–281.

    Google Scholar 

  11. Grignon, N., Halpern, S., Jeusset, J., and Fragu, P. (1996) SIMS microscopy of plant tissues. J. Microsc. Soc. Am. 2, 53–63.

    Google Scholar 

  12. Burdo, R. A. and Morrison, G. H. (1971) Table of Atomic and Molecular Lines for Spark Source Mass Spectrometry of Complex Sample-Graphite Mixes. Report #1670. Marerials Science Center, Cornell University, Ithaca, New York.

    Google Scholar 

  13. Grignon, N., Halpern, S., Jeusset, J., Briançon, C., and Fragu, P. (1997) Localization of chemical elements and isotopes in the leaf of soybean (Glycine max) by SIMS microscopy: critical choice of sample preparation procedure. J. Microsc. (Oxford) 186, 51–66.

    Article  CAS  Google Scholar 

  14. Grignon, N., Jeusset, J., Lebeau, E., Moro, C., Gojon, A., and Fragu, P. (1999) SIMS localization of nitrogen in the leaf of soybeans: basis of quantitative procedures by localized measurements of isotopic ratio. J. Trace Microprobe Technol. 17, 477–490.

    CAS  Google Scholar 

  15. Peteranderl, R. and Lechene, C. (2004) Measure of carbon and nitrogen stable isotope ratios in cultured cells. Amer. Soc. Mass Spectrom. 15, 478–485.

    Article  CAS  Google Scholar 

  16. Gilkey, J. C. and Staehelin, L. A. (1986) Advances in ultrarapid freezing for the preservation of cellular ultrastructures. J. Electron Microsc. Tech. 3, 117–210.

    Article  Google Scholar 

  17. Studer, D., Graber, W., Al-Amoudi, A., and Eggli, P. (2001). A new approach for cryofixation by high-pressure freezing, J. Microsc. (Oxford) 203, 285–294.

    Article  CAS  Google Scholar 

  18. Kaezer, W. (1989) Freeze substitution of plant tissues with a new medium containing dimethoxypropane. J. Microsc. (Oxford) 154, 273–281.

    Google Scholar 

  19. Edelmann, L. (2002). Freeze-dried and resin-embedded biological material is well suited for ultrastructure research. J. Microsc. (Oxford) 207, 5–26.

    Article  CAS  Google Scholar 

  20. Bücking, H. and Heyser, W. (1997) Intracellular compartmentation of phosphorus in roots of Pinus sylvestris L. and the implications for transfer processes in ectomycorrhiza, in Trees. Contribution to Modern Tree Physiology (Rennenberg, H., Eschrich, W., Ziegler, H. eds.), SPB Academic Publ., The Hague, pp. 377–391.

    Google Scholar 

  21. Burns, M. S. (1986) Observations concerning the existence of matrix effects in SIMS analysis of biological specimens, in Secondary Ion Mass Spectrometry, SIMS 5 (Springer Services Chemical Physics, 44), Springer-Verlag, New York, pp. 426–428.

    Google Scholar 

  22. Lechêne, C. and Harris, R. C. (1987) Electron probe analysis of cultured renal cells, in Contemporary Issues in Nephrology Modern Techniques of Ion Transport (Brenner, B. M. and Stein, J. H., eds.), Churchill Livingstone, New York, pp. 173–198.

    Google Scholar 

  23. Briançon, C. (1991) Effet de la surcharge iodée sur la régulation du métabolisme thyroidien de l’iode. Thése Doct. Sc. 165 pp., Paris-Sud-Orsay, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Grignon, N. (2007). Using SIMS and MIMS in Biological Materials. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology™, vol 369. Humana Press. https://doi.org/10.1007/978-1-59745-294-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-294-6_28

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-573-6

  • Online ISBN: 978-1-59745-294-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics