Skip to main content

Immobilization of Enzymes for Use in Supercritical Fluids

  • Protocol
Immobilization of Enzymes and Cells

Part of the book series: Methods in Biotechnologyâ„¢ ((MIBT,volume 22))

Abstract

Supercritical fluids (SCFs) are environmentally benign solvents that enable efficient ability to dissolve and/or transport many hydrophobic compounds. Because the solvent properties of SCFs can be adjusted by changing either the pressure or the temperature, they are widely used in a industrial extractive clean processes. For enzymatic biotransformation, several criteria must be considered to select an SCF as the reaction medium, such as the critical parameters or the safety and cost advantages. The importance of strategies for stabilizing enzymes toward SCFs, as well as the appropriate design of reactors is also discussed. Four different high-pressure reactors (i.e., stirred tank, packed bed, cross-flow membrane, and membrane with recirculation) used for enzymatic synthetic processes utilizing SCFs are described in detail. Protocols for operation with these reactors to carry out butyl butyrate synthesis or the kinetic resolution or rac-1-phenylethanol are described in detail, including procedures to obtain membranes with immobilized enzymes and a list of notes of special interest for researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oakes R. S., Clifford A. A., and Rayner C. M. (2001) The use of supercritical fluids in synthetic organic chemistry. J. Chem. Soc. Perkin Trans. 1, 917–941.

    Article  Google Scholar 

  2. Street W. B. (1983) Phase equilibria in fluid and solids mixtures at high pres-sures. In: Chemical Engineering at Supercritical Fluid Conditions (Paulatis et al., eds.) Ann Arbor Science Ann Arbor, MI, pp. 3–30.

    Google Scholar 

  3. Mesiano A. J., Beckman E. J., and Russel A. J. (1999) Supercritical biocatalysis. Chem. Rev. 99, 623–633.

    Article  CAS  Google Scholar 

  4. Knez Z. and Habulin M. (2002) Compressed gases as alternative enzymatic-reaction solvents: a short review. J. Supercrit. Fluids. 23, 29–42.

    Article  CAS  Google Scholar 

  5. Nakamura K. (1990) Biochemical reactions in supercritical fluids. Trends Biotechnol. 8, 288–292.

    Article  CAS  Google Scholar 

  6. Marty A., Combes D., and Condoret J. S. (1994) Continuous reaction-separa-tion process for enzymatic esterification in supercritical carbon dioxide. Biotechnol. Bioeng. 43, 497–504.

    Article  CAS  Google Scholar 

  7. Beckmann E. J. (2004) Supercritical and near-critical CO2 in green chemical syn-thesis and processing. J. Supercrit. Fluids. 28, 121–191.

    Article  Google Scholar 

  8. Chulalaksananukul W., Condoret J. S., and Combes D. (1993) Geranyl acetate synthesis by lipase catalyzed transesterification in supercritical carbon dioxide. Enzyme Microb. Technol. 15, 691–697.

    Article  CAS  Google Scholar 

  9. Castillo E., Marty A., Combes D., and Condoret J. S. (1994). Polar substrates for enzymatic reactions in supercritical CO2: How to overcome the solubility limi-tation? Biotechnol. Lett. 16, 169–174.

    Article  CAS  Google Scholar 

  10. Kamat S., Barrera J., Beckman E. J., and Russell A. J. (1992). Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids: I. Optimization of enzyme environments. Biotechnol. Bioeng. 40, 158–166.

    Article  CAS  Google Scholar 

  11. Kamat S., Critchley G., Beckman E. J., and Russell A. J. (1995) Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids: III. Does carbon dioxide covalently modify enzymes? Biotechnol. Bioeng. 46, 610–620.

    Article  CAS  Google Scholar 

  12. Almeida M. C., Ruivo R., Maia C., Freire L. Correa de Sampaio T., and Barreiros S. (1998) Novozym 435 activity in compressed gases. Water activity and temperature effects. Enzyme Microb. Technol. 22, 494–499.

    Article  CAS  Google Scholar 

  13. Habulin M. and Knez Z. (2001) Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. J. Chem. Technol. Biotechnol. 76, 1260–1266.

    Article  CAS  Google Scholar 

  14. Nakaya H., Miyawaki O., and Nakamura K. (2001) Determination of log P for pressurized carbon dioxide and its characterization as a medium for enzyme reac-tion. Enzyme Microb. Technol. 28, 176–182.

    Article  CAS  Google Scholar 

  15. Lozano P., Avellaneda A. Pascual R., and Iborra J. L. (1996). Stability of immobilized α-chymotrypsin in supercritical carbon dioxide. Biotechnol. Lett. 18, 1345–1350.

    Article  CAS  Google Scholar 

  16. Striolo A., Favaro A., Elvassore N., Bertucco A., and Di Notto V. (2003). Evidence of conformational changes for protein films expossed to high-pressure CO2 by FT-IR spectroscopy. J. Supercrit. Fluids. 27, 283–295.

    Article  CAS  Google Scholar 

  17. Lozano P., de Diego T., Carrié D., Vaultier M., and Iborra J. L. (2002) Con-tinuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chem. Commum. (Camb), Apr. 77, 692,693.

    Google Scholar 

  18. Lozano P., de Diego T., Carrié D., Vaultier M., and Iborra J. L. (2003) Lipase catalysis in ionic liquids and supercritical carbon dioxide at 150°C. Biotechnol. Prog. 19, 380–382.

    Article  CAS  Google Scholar 

  19. Lozano P., De Diego T., Carrié D., Vaultier M., and Iborra J. L. (2003) Enzy-matic catalysis in ionic liquids and supercritical carbon dioxide. In: Ionic Liquids as Green Solvents: Progress and Prospects (Rogers R. D. and Seddon K. R., eds.) ACS Symposium Series 856 Washington DC, pp. 239–250.

    Google Scholar 

  20. Dzyuba S. V. and Bartsch R. A. (2003). Recent advances in applications of room-temperature ionic liquids/supercritical CO2 systems. Angew. Chem. Int. Ed. 42, 148–150.

    Article  CAS  Google Scholar 

  21. Blanchard L. A., Gu Z., and Brennecke J. F. (2001) High-pressure phase behaviour of ionic liquids/CO2 systems. J. Phys. Chem. B. 105, 2437–2444.

    Article  CAS  Google Scholar 

  22. Lozano P. De Diego T., Carrie D., Vaultier M., and Iborra J. L. (2004) Synthe-sis of glycidyl esters catalyzed by lipases in ionic liquids and supercritical carbon dioxide. J. Molec. Catal. A. 214, 113–119.

    Article  CAS  Google Scholar 

  23. Lozano P., de Diego T., Gmouh S., Vaultier M., and Iborra J.L. (2004). Crite-ria to design green enzymatic processes in ionic liquid/supercritical carbon diox-ide systems. Biotechnol. Prog. 20, 661–669.

    Article  CAS  Google Scholar 

  24. Novak Z., Habulin M., Krmelj V., and Knez Z. (2003). Silica aerogels as sup-ports for lipase catalyzed esterifications at sub-and supercritical conditions. J. Supercrit. Fluids. 27, 169–178.

    Article  CAS  Google Scholar 

  25. Lozano P., Pérez-Marín A. B., De Diego T., et al. (2002). Active membranes coated with immobilized Candida antarctica lipase B: preparation and applica-tion for continuous butyl butyrate synthesis in organic media. J. Membrane Sci. 201, 55–64.

    Article  CAS  Google Scholar 

  26. Knez Z., Habulin M., and Primozic M. (2003) Hydrolases in supercritical CO2 and their use in a high-pressure membrane reactor. Bioprocess Biosyst. Eng. 25, 279–284.

    CAS  Google Scholar 

  27. Lozano P., Víllora G., Gómez G., et al. (2004) Membrane reactor with immobilized Candida antarctica lipase B for ester synthesis in supercritical carbon dioxide. J. Supercrit. Fluids. 29, 121–128.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Lozano, P., de Diego, T., Iborra, J.L. (2006). Immobilization of Enzymes for Use in Supercritical Fluids. In: Guisan, J.M. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnologyâ„¢, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-053-9_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-290-2

  • Online ISBN: 978-1-59745-053-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics