Skip to main content

Conformational Stability Denaturation and Renaturation

  • Protocol
Characterization of Proteins

Part of the book series: Biological Methods ((BM))

Abstract

In order to perform its biological function, a protein must possess the correct configuration, i.e., it must be in its native state, with the correct secondary, tertiary, and, where applicable, quaternary structure. Under in vivo conditions, this is achieved on the ribosome during the synthesis of the protein. Any mistakes in the folding mechanism are then symptomatic of a pathological condition. Howver, under in vitro conditions of isolation, concentration, drying, and so on, changes may occur that will result in partial or complete inactivation. The protein is then said to be denatured. With the vast majority of proteins, the stability of the native (N) state, relative to the denatured (D) state, is highly marginal, amounting to no more than 60 kJlmo1, which is equivalent to the strength of only 3–4 hydrogen bonds (1). Yet, the native structure usually contains several hundred such bonds. From a biological point of view, this marginal stability is required so that proteins can be turned over rapidly, thus avoiding the buildup of, say, immunoglobulins or hormones in the serum. On the other hand, the labile nature of the native state presents problems for the processor who must avoid extremes of pH, ionic strength, temperature, shear, and so on during the various stages of the isolation and concentration process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. H. Pain, in Characterization of Protein Conformation and Function (F. Franks, ed.) Symposium Press, London (1979), p. 19.

    Google Scholar 

  2. R. Lumry, R. Biltonen, and J. F. Brand& Biopolymers 4, 917–944 (1966)

    Article  PubMed  CAS  Google Scholar 

  3. J. F. Brandts and R. Lumry, J. Phys. Chem. 67, 1484–1494 (1963).

    Article  CAS  Google Scholar 

  4. J. F. Brandts, J. Am. Chem. Sot. 86, 4291–4301 (1964)

    Article  CAS  Google Scholar 

  5. C. N. Pace, Crit. Rev. Biochem. 3, 1–43 (1975).

    Article  CAS  Google Scholar 

  6. C. Tanford, Adv. Protein Chem. 24, 1–95 (1970).

    Article  PubMed  CAS  Google Scholar 

  7. W. Pfeil and P. L. Privalov, Biophys. Chem. 4, 23–40 (1976).

    Article  PubMed  CAS  Google Scholar 

  8. P. L. Privalov and N. N. Kechinashvili, J. Mol. BioE. 86, 665–684 (1974).

    Article  CAS  Google Scholar 

  9. P. L. Privalov and E I. Tiktopulo, Bzopolymer 9, 127–139 (1970).

    Article  CAS  Google Scholar 

  10. J. G. Brandts, J. Fu, and J. H. Nordin, in The Frozen Cell (G. E. W. Wolstenholme and M. O′Connor, eds.) J & A Churchill, London (1970), pp. 189–208.

    Google Scholar 

  11. F. Franks, Biophysics and Biochemistry at Low Temperatures, Cambridge University Press, Cambridge (1985)

    Google Scholar 

  12. S. N. Timasheff, in PhysicaI Aspects of Protein Interactions (N. Catsimpoolas, ed.) Elsevier North-Holland, New York (1978), pp. 219–273.

    Google Scholar 

  13. M. A. Lauffer, in Physical Aspects of Protein Interactions (N. Catsimpoolas, ed.) Elsevier North Holland, New York (1978) pp. 115–170.

    Google Scholar 

  14. W. L. Dixon, F. Franks, and T. apRees, Phytochanistry 20, 969–972 (1981).

    Article  CAS  Google Scholar 

  15. J. Schellman, in Protein Folding (R. Jaenicke, ed.) Elsevier North-Holland, Amsterdam (1980), p. 331.

    Google Scholar 

  16. H. Nojima, A. Ikai, and H. Noda, J. Mol. Biol. 116, 429–442 (1977).

    Article  PubMed  CAS  Google Scholar 

  17. S. A. Hawley and R. M. Mitchell, Biochemistry 14, 3257–3264 (1975).

    Article  PubMed  CAS  Google Scholar 

  18. A. Zipp and W. Kauzmann, Biochemistry 12, 4217–4228 (1973).

    Article  PubMed  CAS  Google Scholar 

  19. S. E. Charm and B. L. Wong, Biotech. Bioeng. 12, 1103–1109 (1970).

    Article  CAS  Google Scholar 

  20. S. E. Charm and B. L. Wong, Science 170, 466–468 (1970).

    Article  PubMed  CAS  Google Scholar 

  21. S. E. Charm and B. L. Wong, Biorheology 12, 275–278 (1975)

    PubMed  CAS  Google Scholar 

  22. F. Franks and D. Eagland, Crit Rev. Biochem. 3, 165–219 (1975).

    Article  CAS  Google Scholar 

  23. W. Pfeil and I,. L. Privalov, in Biochemical Thermodynamics (M. N. Jones, ed.) Elsevier, Amsterdam (1979), p. 75.

    Google Scholar 

  24. V. V. Filimonov, W. Pfeil, T. N. Tsalkova, and P. L. Privalov, Biophys. Chem. 8, 117–122 (1978).

    Article  PubMed  CAS  Google Scholar 

  25. W. Pfeil and P. L. Privalov, Biophys. Chem. 4, 41–50 (1976).

    Article  PubMed  CAS  Google Scholar 

  26. P. L. Privalov, Adv. Protein. Chem. 33, 167–241 (1979).

    Article  PubMed  CAS  Google Scholar 

  27. P. H. von Hippel and A. Hamabata, J. Mechanochem. Cell Motil. 2, 127–138 (1973).

    Google Scholar 

  28. P. H. von Hippel and K. Y. Wong, J. Bill. Chem. 240, 3909–3923 (1965).

    Google Scholar 

  29. S. Y. Gerlsma, J. Biol. Chem. 243, 957 (1968).

    PubMed  CAS  Google Scholar 

  30. B. Robson, in Water Biophysics (F. Franks, S. F. Mathias, eds.) John Wiley & Sons, Chichester (1982), p. 62.

    Google Scholar 

  31. F. Franks and J. E. Desnoyers, Water Sci. Rev. 1, 171–232 (1985).

    Article  Google Scholar 

  32. J. F. Brandts and L. Hunt, J. Am. Chem. Sot. 89, 4826–4838 (1967).

    Article  CAS  Google Scholar 

  33. M. Kugimiya and C. C. Bigelow, Can. J. Biochem. 51, 581–585 (1973).

    Article  PubMed  CAS  Google Scholar 

  34. R. N. Sharma and C. C. Bigelow, J. Mol. Biol. 88, 247–257 (1974).

    Article  PubMed  CAS  Google Scholar 

  35. D. E. Graham and M. C. Phillips, J. Colloid Interface Sci. 70, 403–414 (1979).

    Article  CAS  Google Scholar 

  36. D. E. Graham and M. C. Phillips, J. CoZloid Interface Sci. 70, 415–439 (1979).

    Article  CAS  Google Scholar 

  37. D. E. Graham and M. C. Phrllrps, J. Colloid Interface Sci. 76, 227–250 (1980).

    Article  CAS  Google Scholar 

  38. J. F. Brandts, H. R. Halvorson, and M. Brennan, Biochemistry 14, 4953–4963 (1975).

    Article  PubMed  CAS  Google Scholar 

  39. P. E. Bock and C. Frieden, Trends Biochem. Sci. May 100–103 (1978).

    Google Scholar 

  40. P. E. Bock and C. Frieden, J. Biol. Chem. 251, 5630–5643 (1976); Trends. Brochem. SIX May l00-103 (1978).

    PubMed  CAS  Google Scholar 

  41. P. Douzou, Cryobiochemistry Academic, London (1977).

    Google Scholar 

  42. T. E. Creighton, J. Mol. Biol. 129, 235–264 (1979).

    Article  PubMed  CAS  Google Scholar 

  43. M. Karplus, S. Andrew, and M. C. Ammon, Sci. Am. 254, 36 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 The Humana Press Inc

About this protocol

Cite this protocol

Franks, F. (1988). Conformational Stability Denaturation and Renaturation. In: Franks, F. (eds) Characterization of Proteins. Biological Methods. Humana Press. https://doi.org/10.1007/978-1-59259-437-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-437-5_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-109-8

  • Online ISBN: 978-1-59259-437-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics