Skip to main content

Application of Sucrose Synthase in the Synthesis of Nucleotide Sugars and Saccharides

  • Protocol
Carbohydrate Biotechnology Protocols

Part of the book series: Methods in Biotechnology™ ((MIBT,volume 10))

Abstract

The realization that the oligosaccharide moieties of glycoconjugates, such as glycoproteins and glycolipids, are involved in important intra- and intercellular of important oligosaccharide structures as tools in analytical and therapeutic studies (see refs. 1 and 2 for reviews). A number of efficient chemical procedures have been developed for the synthesis of the “glyco-” part (see refs. 37 for review). However, for the synthesis of a given saccharide structure, an individual strategy has to be set up comprising many laborious protection and deprotection steps for stereo-controlled synthesis, which finally results in only moderate overall yields. As an example, the synthesis of N-acetyllactosamine (LacNAc) involves 12 steps and needs 3 months of lab work (7). A scale-up of the chemical procedure often encounters environmental problems because all steps are carried out in organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rademacher, T. W., Parekh, R. B., and Dwek, R. A. (1988) Glycobiology. Annu. Rev. Biochem. 57, 785–838.

    Article  PubMed  CAS  Google Scholar 

  2. Varki, A. (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130.

    Article  PubMed  CAS  Google Scholar 

  3. Paulsen, H. (1982) Advances in selective chemical synthesis of complex oligosaccharides. Angew. Chem. Int. Ed. Engl. 21, 155–173.

    Article  Google Scholar 

  4. Kondo, H., Aoki, S., Ichikawa, Y., Halcomb, R. L., Ritzen, H., and Wong, C.-H. (1994) Glycosyl phosphites as glycosylation reagents: scope and mechanism. J. Org. Chem. 59, 864–877.

    Article  CAS  Google Scholar 

  5. Schmidt, R. R. and Kinzy W. (1994) Anomeric-oxygen activation for glycoside synthesis. The trichloroacetimidate method. Adv. Carbohydr. Chem. Biochem. 50, 21–128.

    Article  PubMed  CAS  Google Scholar 

  6. Garg, H. G., von dem Bruch, K., and Kunz, H. (1994) Developments in the synthesis of glycopeptides containing glycosyl L-asparagine, L-serine and L-threonine. Adv. Carbohydr. Chem. Biochem. 50, 277–310.

    Article  PubMed  CAS  Google Scholar 

  7. Khan, S. H. and Hindsgaul, O. (1994) Chemical synthesis of oligosaccharides, in Frontiers in Molecular Biology, Molecular Glycobiology (Fukuda M. and Hindsgaul O., eds.), IRL, Oxford, pp. 206–229.

    Google Scholar 

  8. Wong, C.-H. and Whitesides, G. M. (1994) Enzymes in Synthetic Organic Chemistry. Elsevier Science, Oxford.

    Google Scholar 

  9. Nilsson, K. G. I. (1996) Synthesis with glycosidases, in Modern Methods in Carbohydrate Synthesis (Khan, S. H. and O’Neill, R. A., eds.), Harwood Academic Publishers, Amsterdam, pp. 518–547.

    Google Scholar 

  10. Palcic M. M. and Hindsgaul, O. (1996) Glycosyltransferases in the synthesis of oligosaccharide analogs. Trends Glycosci. Glycotechnol. 8, 37–49.

    CAS  Google Scholar 

  11. Elling, L. (1997) Glycobiotechnology: Enzymes for the synthesis of nucleotide sugars. Adv. Biochem. Eng. Biotechnol. 58, 89–144.

    PubMed  CAS  Google Scholar 

  12. Elling, L. and Kula, M.-R. (1993) Purification of sucrose synthase from rice and its protein-chemical characterization. J. Biotechnol. 29, 277–286.

    Article  CAS  Google Scholar 

  13. Elling, L., Güldenberg, B., Grothus, M., Zervosen, A., Péus, M., Helfer, A., Stein, A., et al. (1995) Isolation of sucrose synthase from rice (Oryza sativa) grains in pilot scale for application in carbohydrate synthesis. Biotechnol. Appl. Biochem. 21, 29–37.

    CAS  Google Scholar 

  14. Schrader, H. (1998) Phd-thesis, Heimrich Heine University, Drisseldorf, Germany.

    Google Scholar 

  15. Elling, L., Grothus, M., and Kula, M.-R. (1993) Investigation of sucrose synthase from rice for the synthesis of various nucleotide sugars and saccharides. Glycobiology 3, 349–355.

    Article  PubMed  CAS  Google Scholar 

  16. Elling, L. and Kula, M.-R. (1995) Characterization of sucrose synthase from rice grains for the enzymatic synthesis of UDP-and TDP-glucose. Enzyme Microb. Technol. 17, 929–934.

    Article  CAS  Google Scholar 

  17. Zervosen, A., Stein, A., Adrian, H., and Elling, L. (1996) Combined enzymatic synthesis of nucleotide (deoxy)sugars from sucrose and nucleoside monophosphates. Tetrahedron 52, 2395–2404.

    Article  CAS  Google Scholar 

  18. Stein, A., Kula, M.-R., and Elling, L. (1998) Combined preparative enzymatic synthesis of dTDP-6-deoxy-4-keto-D-glucose from dTDP and sucrose. Glycoconjugate J. 15, 139–145.

    Article  CAS  Google Scholar 

  19. Preiss J. (1991) Biology and molecular biology of starch synthesis and its regulation, in Oxford Surveys of Plant Molecular & Cell Biology, vol. 7 (Miflin, B. J., ed.), Oxford University Press, Oxford, pp. 59–114.

    Google Scholar 

  20. Kleczkowski, L. A., Villand, P., Lönneborg, A., Olsen, O.-A., and Ernst, L. (1991) Plant ADP-glucose pyrophosphorylase: recent advances and biotechnological perspectives (a review). Z. Naturforsch. 46c, 605–612.

    Google Scholar 

  21. Preiss, J. and Romeo, T. (1989) Physiology, biochemistry and genetics of bacterial glycogen synthesis. Adv. Microb. Physiol. 30, 183–238.

    Article  PubMed  CAS  Google Scholar 

  22. Zervosen, A. and Elling, L. (1996) A novel three-enzymes-reaction-cycle for the synthesis of N-acetyllactosamine with in situ regeneration of uridine 5′-diphosphate glucose and uridine 5′-diphosphate galactose. J. Am. Chem. Soc. 118, 1836–1840.

    Article  CAS  Google Scholar 

  23. Varki, A. (1994) Selectin ligands. Proc. Natl. Acad. Sci. USA 91, 7390–7397.

    Article  PubMed  CAS  Google Scholar 

  24. Montreuil, J., Vliegenthart, J. F. G., and Schachter, H. (eds.) (1995) Glycoproteins. New Comprehensive Biochemistry, vol. 29a. Elsevier, Amsterdam.

    Google Scholar 

  25. Nelsestuen, G. and Kirkwood, S. (1971) The mechanism of action of the uridine diphosphoglucose 4-epimerase. J. Biol. Chem. 246, 7533–7543.

    CAS  Google Scholar 

  26. Zervosen, A., Elling, L., and Kula, M.-R. (1994) Continuous enzymatic synthesis of 2′-Deoxythymidine-5′-(α-D-glucopyranosyl)-diphosphate. Angew. Chem. Int. Ed. Engl. 33, 571–572.

    Article  Google Scholar 

  27. Bergmeyer, H. U. (1974) Adenosine 5′-diphosphoglucose. Methods Enzymatic Analysis 7, 496–502.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Zervosen, A., Elling, L. (1999). Application of Sucrose Synthase in the Synthesis of Nucleotide Sugars and Saccharides. In: Bucke, C. (eds) Carbohydrate Biotechnology Protocols. Methods in Biotechnology™, vol 10. Humana Press. https://doi.org/10.1007/978-1-59259-261-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-261-6_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-563-8

  • Online ISBN: 978-1-59259-261-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics