Skip to main content

Using Genome In Situ Hybridization (GISH) to Distinguish the Constituent Genomes of Brassica nigra and B. rapa in the Hybrid B. juncea

  • Protocol
  • First Online:
Plant Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2061))

Abstract

The genome in situ hybridization (GISH) technique has become important for deciphering the organization of the constituent genomes in the allopolyploid plants that comprise many of the crop species. This technique comprises using the nuclear DNA from the constituent genomes as probes that have been labeled separately with different nucleotides that can be identified by using secondary antibodies. The Brassica family includes a range of mustard species with diverse phytochemical and morphological profile, hence making it an important plant family in agriculture. Meiosis is a specialized cellular division which brings the homologous chromosomes together and creates recombinants via pairing and synapsis during its early phase. Transfer of the genetic material within homoelog pairs creates novelty in subsequent generations which hold promise for improving the agriculture sector. This chapter is concerned with developing a GISH technique that discriminates between the constituent genomes in the allopolyploid B. juncea, in order to study meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64(3):315–324

    Article  Google Scholar 

  2. Stevenson M, Armstrong SJ, Ford-Lloyd BV, Jones GH (1998) Comparative analysis of crossover exchanges and chiasmata in Allium cepa x fistulosum after genomic in situ hybridization (GISH). Chromosome Research 6: 567–574.

    Google Scholar 

  3. Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ (2008) A and C genome and chromosome identification in Brassica napus by sequential FISH and GISH. Genetics 180:1849–1857

    Article  CAS  Google Scholar 

  4. Howell EC and Armstrong SJ (2013) Using sequential fluorescence and genomic in situ hybridization (FISH and GISH) to distinguish the A and C genomes in Brassica napus Wojciech. In: Pawlowski P et al. (eds) Plant meiosis: methods and protocols, methods in molecular biology, vol. 990. Springer Science+Business Media, New York, pp 38–47. https://doi.org/10.1007/978-1-62703-333-6_3

  5. Song KM, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLPs) 3. Genome relationship in Brassica and related genera and the origin of B. oleracea and Brassica rapa (syn. Campestris). Theor Appl Genet 79:497–506

    Article  CAS  Google Scholar 

  6. Pradhan AK, Prakash S, Mukhopadhyay A, Pental D (1992) Phytogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: molecular and taxonomic classifications are incongruous. Theor Appl Genet 85(2–3):331–340

    Article  CAS  Google Scholar 

  7. Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae Brassicae) chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Eugenio Sanchez Moran and Elaine Howell for the help and discussion in the laboratory. For technical assistance we would thank Steve Price and Karen Staples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Armstrong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shamim, Z., Armstrong, S.J. (2020). Using Genome In Situ Hybridization (GISH) to Distinguish the Constituent Genomes of Brassica nigra and B. rapa in the Hybrid B. juncea. In: Pradillo, M., Heckmann, S. (eds) Plant Meiosis. Methods in Molecular Biology, vol 2061. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9818-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9818-0_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9817-3

  • Online ISBN: 978-1-4939-9818-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics