Skip to main content

Chromatin Immunoprecipitation of Meiotically Expressed Proteins from Arabidopsis thaliana Flowers

  • Protocol
  • First Online:
Plant Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2061))

Abstract

During meiosis recombination occurs between homologous chromosomes which can result in reciprocal exchanges of genetic information, called crossovers. Crossover rate is heterogeneous within the genome, with local regions having a significantly higher recombination rate relative to the genome average. These regions are termed hotspots and typically occur with widths of kilobases. Therefore, there is a need to profile recombination factors at a similar resolution during meiosis via techniques such as chromatin immunoprecipitation (ChIP). Here we describe a ChIP protocol, combined with high throughput sequencing (ChIP-seq) optimised for analysis of meiotically expressed proteins in Arabidopsis thaliana flowers. We provide methods to (1) isolate nuclei and prepare the chromatin for shearing, (2) immunoprecipitate DNA molecules cross-linked to a protein of interest, (3) to size-select and purify immunoprecipitated DNA molecules, and (4) to prepare DNA sequencing libraries suitable for high-throughput sequencing. Together, these methods allow the detection of binding sites for meiotic proteins in the Arabidopsis genome at high resolution, which will provide insights into relationships between meiotic chromosome organization, chromatin and recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robert T, Nore A, Brun C, Maffre C, Crimi B, Bourbon HM, de Massy B (2016) The TopoVIB-like protein family is required for meiotic DNA double-strand break formation. Science 351:943–949

    Article  CAS  PubMed  Google Scholar 

  2. Vrielynck N, Chambon A, Vezon D, Pereira L, Chelysheva L, De Muyt A, Mezard C, Mayer C, Grelon M (2016) A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 351:939–943

    Article  CAS  PubMed  Google Scholar 

  3. Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A, Shirahige K, Klein F (2011) Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 146:372–383

    Article  CAS  PubMed  Google Scholar 

  4. Stanzione M, Baumann M, Papanikos F, Dereli L, Lange J, Ramlal A, Trankner D, Shibuya H, de Massy B, Watanabe Y, Jasin M, Keeney S, Toth A (2016) Meiotic DNA break formation requires the unsynapsed chromosome axis-binding protein IHO1 (CCDC36) in mice. Nat Cell Biol 18:1208–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Villeneuve AM, Hillers KJ (2001) Whence meiosis? Cell 106:647–650

    Article  CAS  PubMed  Google Scholar 

  6. Yelina NE, Lambing C, Hardcastle TJ, Zhao X, Santos B, Henderson IR (2015) DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev 29:2188–2202

    Article  Google Scholar 

  7. Si W, Yuan Y, Huang J, Zhang X, Zhang Y, Zhang Y, Tian D, Wang C, Yang Y, Yang S (2015) Widely distributed hot and cold spots in meiotic recombination as shown by the sequencing of rice F2 plants. New Phytol 206:1491–1502

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Li L, Yan J (2015) Dissecting meiotic recombination based on tetrad analysis by single-microscope sequencing in maize. Nat Commun 24:6648

    Article  Google Scholar 

  9. Demirci S, van Dijk AD, Sanchez Perez G, Aflitos SA, de Ridder D, Peters SA (2017) Distribution, position and genomic characteristics of crossovers in tomato recombinant inbred lines derived from an interspecific cross between Solanum lycopersicum and Solanum pimpinellifolium. Plant J 89:554–564

    Article  CAS  PubMed  Google Scholar 

  10. Kleckner N (2006) Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 115:175–194

    Article  PubMed  Google Scholar 

  11. Armstrong SJ, Caryl AP, Jones GH, Franklin FC (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3645–3655

    Article  CAS  PubMed  Google Scholar 

  12. Nonomura K, Nakano M, Eiguchi M, Suzuki T, Kurata N (2006) PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci 119:217–225

    Article  CAS  PubMed  Google Scholar 

  13. Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Mechtler K, Armstrong SJ, Perry R, Pradillo M, Cunado N, Franklin FC (2012) Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. PLoS Genet 8:e1002507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang K, Wang M, Tang D, Shen Y, Qin B, Li M, Cheng Z (2011) PAIR3, an axis-associated protein, is essential for the recruitment of recombination elements onto meiotic chromosomes in rice. Mol Biol Cell 22:12–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Osman K, Yang J, Roitinger E, Lambing C, Heckmann S, Howell E, Cuacos M, Imre R, Durnberger G, Mechtler K, Armstrong S, Franklin FCH (2018) Affinity proteomics reveals extensive phosphorylation of the Brassica chromosome axis protein ASY1 and a network of associated proteins at prophase I of meiosis. Plant J 1:17–33

    Article  Google Scholar 

  16. Chambon A, West A, Vezon D, Horlow C, De Muyt A, Chelysheva L, Ronceret A, Darbyshire AR, Osman K, Heckmann S, Franklin FCH, Grelon M (2018) Identification of ASYNAPTIC4, a component of the meiotic chromosome axis. Plant Physiol 178:233–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai X, Dong F, Edelmann RE, Makaroff CA (2003) The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci 116:2999–3007

    Article  CAS  PubMed  Google Scholar 

  18. Golubovskaya IN, Hamant O, Timofejeva L, Wang CJ, Braun D, Meeley R, Cande WZ (2006) Alleles of afd1 dissect REC8 functions during meiotic prophase I. J Cell Sci 119:3306–3015

    Article  CAS  PubMed  Google Scholar 

  19. Lam WS, Yang X, Makaroff CA (2005) Characterization of Arabidopsis thaliana SMC1 and SMC3: evidence that AtSMC3 may function beyond chromosome cohesion. J Cell Sci 118:3037–3048

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez-Moran E, Santos JL, Jones GH, Franklin FC (2007) ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev 21:2220–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang L, Wang S, Yin S, Hong S, Kim KP, Kleckner N (2014) Topoisomerase II mediates meiotic crossover interference. Nature 511:551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Libuda DE, Uzawa S, Meyer BJ, Villeneuve AM (2013) Meiotic chromosome structures constrain and respond to designation of crossover sites. Nature 502:703–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lambing C, Heckmann S (2018) Tackling plant meiosis: from model research to crop improvement. Front Plant Sci 9:829

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD, Copenhaver GP, Yang J, Armstrong SJ, Mechtler K, Roitinger E, Franklin FC (2015) Arabidopsis PCH2 mediates meiotic chromosome remodelling and maturation of crossovers. PLoS Genet 11:e1005372

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kaufmann K, Muino JM, Osteras M, Farinelli L, Krajewski P, Angenent GC (2010) Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-ChIP). Nat Protoc 5:457–472

    Article  CAS  PubMed  Google Scholar 

  26. Kugou K, Ohta K (2009) Genome-wide high-resolution chromatin immunoprecipitation of meiotic chromosomal proteins in Saccharomyces cerevisiae. Methods Mol Biol 557:285–304

    Article  CAS  PubMed  Google Scholar 

  27. Ma H (2006) A molecular portrait of Arabidopsis meiosis. Arabidopsis Book 4:e0095

    Article  PubMed  PubMed Central  Google Scholar 

  28. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Henderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lambing, C., Choi, K., Blackwell, A.R., Henderson, I.R. (2020). Chromatin Immunoprecipitation of Meiotically Expressed Proteins from Arabidopsis thaliana Flowers. In: Pradillo, M., Heckmann, S. (eds) Plant Meiosis. Methods in Molecular Biology, vol 2061. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9818-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9818-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9817-3

  • Online ISBN: 978-1-4939-9818-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics