Skip to main content

Tour de Herpes: Cycling Through the Life and Biology of HSV-1

  • Protocol
  • First Online:
Herpes Simplex Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2060))

Abstract

Herpes simplex virus type 1 (HSV-1) is a prevalent and important human pathogen that has been studied in a wide variety of contexts. This book provides protocols currently in use in leading laboratories in many fields of HSV-1 research. This introductory chapter gives a brief overview of HSV-1 biology and life cycle, covering basic aspects of virus structure, the prevalence of and diseases caused by the virus, replication in cultured cells, viral latency, antiviral defenses, and the mechanisms that the virus uses to counteract these defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weller SK (2011) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK

    Google Scholar 

  2. Knipe DM, Howley PM (2013) Fields virology. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  3. Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, Pellett PE, Roizman B, Studdert MJ, Thiry E (2009) The order Herpesvirales. Arch Virol 154:171–177

    Article  CAS  PubMed  Google Scholar 

  4. Looker KJ, Elmes JAR, Gottlieb SL, Schiffer JT, Vickerman P, Turner KME, Boily MC (2017) Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect Dis 17:1303–1316

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kukhanova MK, Korovina AN, Kochetkov SN (2014) Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry 79:1635–1652

    CAS  PubMed  Google Scholar 

  6. Birkmann A, Zimmermann H (2016) HSV antivirals - current and future treatment options. Curr Opin Virol 18:9–13

    Article  CAS  PubMed  Google Scholar 

  7. Whitley R, Baines J (2018) Clinical management of herpes simplex virus infections: past, present, and future. F1000Res 7. https://doi.org/10.12688/f1000research.16157.1

  8. Shiraki K (2018) Antiviral drugs against alphaherpesvirus. Adv Exp Med Biol 1045:103–122

    Article  CAS  PubMed  Google Scholar 

  9. Johnston C, Gottlieb SL, Wald A (2016) Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine 34:2948–2952

    Article  CAS  PubMed  Google Scholar 

  10. Rajcani J, Banati F, Szenthe K, Szathmary S (2018) The potential of currently unavailable herpes virus vaccines. Expert Rev Vaccines 17:239–248

    Article  CAS  PubMed  Google Scholar 

  11. Denes CE, Miranda-Saksena M, Cunningham AL, Diefenbach RJ (2018) Cytoskeletons in the closet-subversion in alphaherpesvirus infections. Viruses 10:E79

    Article  CAS  PubMed  Google Scholar 

  12. Miranda-Saksena M, Denes CE, Diefenbach RJ, Cunningham AL (2018) Infection and transport of herpes simplex virus type 1 in neurons: role of the cytoskeleton. Viruses 10:E92

    Article  CAS  PubMed  Google Scholar 

  13. Zmasek CM, Knipe DM, Pellett PE, Scheuermann RH (2019) Classification of human Herpesviridae proteins using domain-architecture aware inference of orthologs (DAIO). Virology 529:29–42

    Article  CAS  PubMed  Google Scholar 

  14. Eisenberg RJ, Heldwein EE, Cohen GH, Krummenacher C (2011) Recent progress in understanding herpes simplex virus entry: relationship of structure to function. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 131–152

    Google Scholar 

  15. Agelidis AM, Shukla D (2015) Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol 10:1145–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arii J, Kawaguchi Y (2018) The role of HSV glycoproteins in mediating cell entry. Adv Exp Med Biol 1045:3–21

    Article  CAS  PubMed  Google Scholar 

  17. Zaichick SV, Bohannon KP, Hughes A, Sollars PJ, Pickard GE, Smith GA (2013) The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion. Cell Host Microbe 13:193–203

    Article  CAS  PubMed  Google Scholar 

  18. Preston VG, Murray J, Preston CM, McDougall IM, Stow ND (2008) The UL25 gene product of herpes simplex virus type 1 is involved in uncoating of the viral genome. J Virol 82:6654–6666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huffman JB, Daniel GR, Falck-Pedersen E, Huet A, Smith GA, Conway JF, Homa FL (2017) The C terminus of the herpes simplex virus UL25 protein is required for release of viral genomes from capsids bound to nuclear pores. J Virol 91:e00641–e00617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McElwee M, Vijayakrishnan S, Rixon F, Bhella D (2018) Structure of the herpes simplex virus portal-vertex. PLoS Biol 16:e2006191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mettenleiter TC, Klupp BG, Granzow H (2009) Herpesvirus assembly: an update. Virus Res 143:222–234

    Article  CAS  PubMed  Google Scholar 

  22. Mettenleiter TC, Minson T (2006) Egress of alphaherpesviruses. J Virol 80:1610–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diefenbach RJ (2015) Conserved tegument protein complexes: essential components in the assembly of herpesviruses. Virus Res 210:308–317

    Article  CAS  PubMed  Google Scholar 

  24. Abaitua F, Souto RN, Browne H, Daikoku T, O’Hare P (2009) Characterization of the herpes simplex virus (HSV)-1 tegument protein VP1-2 during infection with the HSV temperature-sensitive mutant tsB7. J Gen Virol 90:2353–2363

    Article  CAS  PubMed  Google Scholar 

  25. Kato A, Kawaguchi Y (2018) Us3 protein kinase encoded by HSV: the precise function and mechanism on viral life cycle. Adv Exp Med Biol 1045:45–62

    Article  CAS  PubMed  Google Scholar 

  26. Maringer K, Stylianou J, Elliott G (2012) A network of protein interactions around the herpes simplex virus tegument protein VP22. J Virol 86:12971–12982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sciortino MT, Taddeo B, Giuffre-Cuculletto M, Medici MA, Mastino A, Roizman B (2007) Replication-competent herpes simplex virus 1 isolates selected from cells transfected with a bacterial artificial chromosome DNA lacking only the UL49 gene vary with respect to the defect in the UL41 gene encoding host shutoff RNase. J Virol 81:10924–10932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mettenleiter TC (2002) Herpesvirus assembly and egress. J Virol 76:1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Albecka A, Owen DJ, Ivanova L, Brun J, Liman R, Davies L, Ahmed MF, Colaco S, Hollinshead M, Graham SC, Crump CM (2017) Dual function of the pUL7-pUL51 tegument protein complex in herpes simplex virus 1 infection. J Virol 91:e02196–e02116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeLuca NA (2011) Functions and mechanism of action of the herpes simplex virus regulatory protein, ICP4. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 17–38

    Google Scholar 

  31. Sandri-Goldin RM (2011) The functions and activities of HSV-1 ICP27, a multifunctional regulator of gene expression. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 39–50

    Google Scholar 

  32. Boutell C, Everett RD (2013) The regulation of alphaherpesvirus infections by the ICP0 family of proteins. J Gen Virol 94:465–481

    Article  CAS  PubMed  Google Scholar 

  33. Everett RD (2006) The roles of ICP0 during HSV-1 infection. In: Sandri-Goldin RM (ed) Alpha herpesviruses. Molecular and cellular biology. Caister Academic Press, Wymondham, pp 39–64

    Google Scholar 

  34. Everett RD (2011) The role of ICP0 in counteracting intrinsic cellular resistance to virus infection. In: Weller SK (ed) Alphaherpesviruses: molecular virology. Caister Academic Press, Norfolk, UK, pp 51–72

    Google Scholar 

  35. Hagglund R, Roizman B (2004) Role of ICP0 in the strategy of conquest of the host cell by herpes simplex virus 1. J Virol 78:2169–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rice SA (2011) Multiple roles of immediate-early protein ICP22 in HSV-1 replication. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 73–88

    Google Scholar 

  37. Fox HL, Dembowski JA, DeLuca NA (2017) A herpesviral immediate early protein promotes transcription elongation of viral transcripts. MBio 8:e00745–e00717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zaborowska J, Baumli S, Laitem C, O’Reilly D, Thomas PH, O’Hare P, Murphy S (2014) Herpes simplex virus 1 (HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymerase II transcription elongation. PLoS One 9:e107654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oldham ML, Hite RK, Steffen AM, Damko E, Li Z, Walz T, Chen J (2016) A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 529:537–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ward SA, Weller SK (2011) HSV-1 DNA replication. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 89–112

    Google Scholar 

  41. Wilkinson DE, Weller SK (2003) The role of DNA recombination in herpes simplex virus DNA replication. IUBMB Life 55:451–458

    Article  CAS  PubMed  Google Scholar 

  42. Weerasooriya S, DiScipio KA, Darwish AS, Bai P, Weller SK (2019) Herpes simplex virus 1 ICP8 mutant lacking annealing activity is deficient for viral DNA replication. Proc Natl Acad Sci U S A 116:1033

    Article  CAS  PubMed  Google Scholar 

  43. Weber PC, Challberg MD, Nelson NJ, Levine M, Glorioso JC (1988) Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 54:369–381

    Article  CAS  PubMed  Google Scholar 

  44. Bermek O, Weller SK, Griffith JD (2017) The UL8 subunit of the helicase-primase complex of herpes simplex virus promotes DNA annealing and has a high affinity for replication forks. J Biol Chem 292:15611–15621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sourvinos G, Everett RD (2002) Visualization of parental HSV-1 genomes and replication compartments in association with ND10 in live infected cells. EMBO J 21:4989–4997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heming JD, Conway JF, Homa FL (2017) Herpesvirus capsid assembly and DNA packaging. Adv Anat Embryol Cell Biol 223:119–142

    Article  PubMed  PubMed Central  Google Scholar 

  47. Albright BS, Kosinski A, Szczepaniak R, Cook EA, Stow ND, Conway JF, Weller SK (2015) The putative herpes simplex virus 1 chaperone protein UL32 modulates disulfide bond formation during infection. J Virol 89:443–453

    Article  CAS  PubMed  Google Scholar 

  48. Salmon B, Cunningham C, Davison AJ, Harris WJ, Baines JD (1998) The herpes simplex virus type 1 U(L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J Virol 72:3779–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang J, Yuan S, Zhu D, Tang H, Wang N, Chen W, Gao Q, Li Y, Wang J, Liu H, Zhang X, Rao Z, Wang X (2018) Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component. Nat Commun 9:3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mettenleiter TC, Muller F, Granzow H, Klupp BG (2013) The way out: what we know and do not know about herpesvirus nuclear egress. Cell Microbiol 15:170–178

    Article  CAS  PubMed  Google Scholar 

  51. Crump C (2018) Virus assembly and egress of HSV. Adv Exp Med Biol 1045:23–44

    Article  CAS  PubMed  Google Scholar 

  52. Owen DJ, Crump CM, Graham SC (2015) Tegument assembly and secondary envelopment of alphaherpesviruses. Viruses 7:5084–5114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bigalke JM, Heldwein EE (2017) Have NEC coat, will travel: structural basis of membrane budding during nuclear egress in herpesviruses. Adv Virus Res 97:107–141

    Article  CAS  PubMed  Google Scholar 

  54. Han J, Chadha P, Starkey JL, Wills JW (2012) Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail. Proc Natl Acad Sci U S A 109:19798–19803

    Article  PubMed  PubMed Central  Google Scholar 

  55. Metrick CM, Heldwein EE (2016) Novel structure and unexpected RNA-binding ability of the C-terminal domain of herpes simplex virus 1 tegument protein UL21. J Virol 90:5759–5769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koenigsberg AL, Heldwein EE (2018) The dynamic nature of the conserved tegument protein UL37 of herpesviruses. J Biol Chem 293:15827–15839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raza S, Alvisi G, Shahin F, Husain U, Rabbani M, Yaqub T, Anjum AA, Sheikh AA, Nawaz M, Ali MA (2018) Role of Rab GTPases in HSV-1 infection: molecular understanding of viral maturation and egress. Microb Pathog 118:146–153

    Article  CAS  PubMed  Google Scholar 

  58. Roussel E, Lippe R (2018) Cellular protein kinase D modulators play a role during multiple steps of herpes simplex virus 1 egress. J Virol 92:e01486–e01418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Albecka A, Laine RF, Janssen AF, Kaminski CF, Crump CM (2016) HSV-1 glycoproteins are delivered to virus assembly sites through dynamin-dependent endocytosis. Traffic 17:21–39

    Article  CAS  PubMed  Google Scholar 

  60. Carmichael JC, Yokota H, Craven RC, Schmitt A, Wills JW (2018) The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B. PLoS Pathog 14:e1007054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bloom DC, Kwiatkowski DL (2011) HSV-1 latency and the roles of LATs. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 295–316

    Google Scholar 

  62. Efstathiou S, Preston CM (2005) Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111:108–119

    Article  CAS  PubMed  Google Scholar 

  63. Nicoll MP, Proenca JT, Efstathiou S (2012) The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 36:684–705

    Article  CAS  PubMed  Google Scholar 

  64. Phelan D, Barrozo ER, Bloom DC (2017) HSV1 latent transcription and non-coding RNA: a critical retrospective. J Neuroimmunol 308:65–101

    Article  CAS  PubMed  Google Scholar 

  65. Collins-McMillen D, Goodrum FD (2017) The loss of binary: pushing the herpesvirus latency paradigm. Curr Clin Microbiol Rep 4:124–131

    Article  PubMed  PubMed Central  Google Scholar 

  66. Knipe DM, Cliffe A (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211–221

    Article  CAS  PubMed  Google Scholar 

  67. Catez F, Picard C, Held K, Gross S, Rousseau A, Theil D, Sawtell N, Labetoulle M, Lomonte P (2012) HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog 8:e1002852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Watson ZL, Washington SD, Phelan DM, Lewin AS, Tuli SS, Schultz GS, Neumann DM, Bloom DC (2018) In vivo knockdown of the herpes simplex virus 1 latency-associated transcript reduces reactivation from latency. J Virol 92:e00812–e00818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cabrera JR, Charron AJ, Leib DA (2018) Neuronal subtype determines herpes simplex virus 1 latency-associated-transcript promoter activity during latency. J Virol 92:JVI.00430-00418

    Article  Google Scholar 

  70. Edwards TG, Bloom DC (2019) Lund human mesencephalic (LUHMES) neuronal cell line supports HSV-1 latency in vitro. J Virol 93:e02210–e02218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR (2008) MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Flores O, Nakayama S, Whisnant AW, Javanbakht H, Cullen BR, Bloom DC (2013) Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J Virol 87:6589–6603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nicoll MP, Proenca JT, Connor V, Efstathiou S (2012) Influence of herpes simplex virus 1 latency-associated transcripts on the establishment and maintenance of latency in the ROSA26R reporter mouse model. J Virol 86:8848–8858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Proenca JT, Coleman HM, Connor V, Winton DJ, Efstathiou S (2008) A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol 89:2965–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Proenca JT, Coleman HM, Nicoll MP, Connor V, Preston CM, Arthur J, Efstathiou S (2011) An investigation of herpes simplex virus promoter activity compatible with latency establishment reveals VP16-independent activation of immediate-early promoters in sensory neurones. J Gen Virol 92:2575–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ramchandani M, Kong M, Tronstein E, Selke S, Mikhaylova A, Magaret A, Huang ML, Johnston C, Corey L, Wald A (2016) Herpes simplex virus type 1 shedding in tears and nasal and oral mucosa of healthy adults. Sex Transm Dis 43:756–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ferenczy MW, DeLuca NA (2009) Epigenetic modulation of gene expression from quiescent herpes simplex virus genomes. J Virol 83:8514–8524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferenczy MW, DeLuca NA (2011) Reversal of heterochromatic silencing of quiescent herpes simplex virus type 1 by ICP0. J Virol 85:3424–3435

    Article  CAS  PubMed  Google Scholar 

  79. Harris RA, Everett RD, Zhu XX, Silverstein S, Preston CM (1989) Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates latent herpes simplex virus type 2 in an in vitro latency system. J Virol 63:3513–3515

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Raja P, Lee JS, Pan D, Pesola JM, Coen DM, Knipe DM (2016) A herpesviral lytic protein regulates the structure of latent viral chromatin. MBio 7:e00633–e00616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Randall RE, Goodbourn S (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47

    Article  CAS  PubMed  Google Scholar 

  82. Sobol PT, Mossman KL (2011) Mechanisms of subversion of type I interferon responses by alphaherpesviruses. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 219–336

    Google Scholar 

  83. Orzalli MH, DeLuca NA, Knipe DM (2012) Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci U S A 109:E3008–E3017

    Article  PubMed  PubMed Central  Google Scholar 

  84. Jerome KR (2011) Immunity to herpes simplex virus. In: Weller SK (ed) Alphaherpesviruses. Molecular virology. Caister Academic Press, Norfolk, UK, pp 331–350

    Google Scholar 

  85. Luecke S, Paludan SR (2015) Innate recognition of alphaherpesvirus DNA. Adv Virus Res 92:63–100

    Article  CAS  PubMed  Google Scholar 

  86. Kurt-Jones EA, Orzalli MH, Knipe DM (2017) Innate immune mechanisms and herpes simplex virus infection and disease. Adv Anat Embryol Cell Biol 223:49–75

    Article  PubMed  PubMed Central  Google Scholar 

  87. Su C, Zhan G, Zheng C (2016) Evasion of host antiviral innate immunity by HSV-1, an update. Virol J 13:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang J, Liu H, Wei B (2017) Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection. J Zhejiang Univ Sci B 18:277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML, Hladik F, Wald A, Corey L (2007) Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 204:595–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhu J, Peng T, Johnston C, Phasouk K, Kask AS, Klock A, Jin L, Diem K, Koelle DM, Wald A, Robins H, Corey L (2013) Immune surveillance by CD8alphaalpha+ skin-resident T cells in human herpes virus infection. Nature 497:494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D (1995) Herpes simplex virus turns off the TAP to evade host immunity. Nature 375:411–415

    Article  CAS  PubMed  Google Scholar 

  92. Ferenczy MW, Ranayhossaini DJ, Deluca NA (2011) Activities of ICP0 involved in the reversal of silencing of quiescent herpes simplex virus 1. J Virol 85:4993–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gu H, Roizman B (2007) Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. Proc Natl Acad Sci U S A 104:17134–17139

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gu H, Roizman B (2009) The two functions of herpes simplex virus 1 ICP0, inhibition of silencing by the CoREST/REST/HDAC complex and degradation of PML, are executed in tandem. J Virol 83:181–187

    Article  CAS  PubMed  Google Scholar 

  95. Glass M, Everett RD (2013) Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection. J Virol 87:2174–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Everett RD, Boutell C, Hale BG (2013) Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol 11:400–411

    Article  CAS  PubMed  Google Scholar 

  97. Tavalai N, Stamminger T (2008) New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 1783:2207–2221

    Article  CAS  PubMed  Google Scholar 

  98. Cuchet-Lourenco D, Boutell C, Lukashchuk V, Grant K, Sykes A, Murray J, Orr A, Everett RD (2011) SUMO pathway dependent recruitment of cellular repressors to herpes simplex virus type 1 genomes. PLoS Pathog 7:e1002123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the UK Medical Research Council (to R.D.E.) and the Australian National Health and Medical Research Council (to R.J.D.). An Australian Government Research Training Program stipend was awarded to C.E.D. The authors are very grateful for the TEM image provided by Dr. Monica Miranda-Saksena that is presented in Fig. 1a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Diefenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Denes, C.E., Everett, R.D., Diefenbach, R.J. (2020). Tour de Herpes: Cycling Through the Life and Biology of HSV-1. In: Diefenbach, R., Fraefel, C. (eds) Herpes Simplex Virus . Methods in Molecular Biology, vol 2060. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9814-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9814-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9813-5

  • Online ISBN: 978-1-4939-9814-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics