Skip to main content

Antiviral Drugs Against Alphaherpesvirus

  • Chapter
  • First Online:
Human Herpesviruses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1045))

Abstract

The discovery of acyclovir and penciclovir has led to the development of a successful systemic therapy for treating herpes simplex virus infection and varicella-zoster virus infection, and the orally available prodrugs, valacyclovir and famciclovir, have improved antiviral treatment compliance. Acyclovir and penciclovir are phosphorylated by viral thymidine kinase and are incorporated into the DNA chain by viral DNA polymerase, resulting in chain termination. Helicase-primase plays an initial step in DNA synthesis to separate the double strand into two single strands (replication fork) and is a new target of antiviral therapy. The helicase-primase inhibitors (HPIs) pritelivir and amenamevir have novel mechanisms of action, drug resistance properties, pharmacokinetic characteristics, and clinical efficacy for treating genital herpes. The clinical study of amenamevir in herpes zoster has been completed, and amenamevir has been submitted for approval for treating herpes zoster in Japan. The clinical use of HPIs will be the beginning of a new era of anti-herpes therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beadle JR, Hartline C, Aldern KA et al (2002) Alkoxyalkyl esters of cidofovir and cyclic cidofovir exhibit multiple-log enhancement of antiviral activity against cytomegalovirus and herpesvirus replication in vitro. Antimicrob Agents Chemother 46:2381–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Sukla S, Field HJ (2014) Helicase-primase inhibitors for herpes simplex virus: looking to the future of non-nucleoside inhibitors for treating herpes virus infections. Future Med Chem 6:45–55

    Article  CAS  PubMed  Google Scholar 

  • Bodsworth NJ, Boag F, Burdge D et al (1997) Evaluation of sorivudine (BV-araU) versus acyclovir in the treatment of acute localized herpes zoster in human immunodeficiency virus-infected adults. The Multinational Sorivudine Study Group. J Infect Dis 176:103–111

    Article  CAS  PubMed  Google Scholar 

  • Boehmer PE, Lehman IR (1997) Herpes simplex virus DNA replication. Annu Rev Biochem 66:347–384

    Article  CAS  PubMed  Google Scholar 

  • Chono K, Katsumata K, Kontani T et al (2010) ASP2151, a novel helicase-primase inhibitor, possesses antiviral activity against varicella-zoster virus and herpes simplex virus types 1 and 2. J Antimicrob Chemother 65:1733–1741

    Article  CAS  PubMed  Google Scholar 

  • Chono K, Katsumata K, Kontani T et al (2012) Characterization of virus strains resistant to the herpes virus helicase-primase inhibitor ASP2151 (Amenamevir). Biochem Pharmacol 84:459–467

    Article  CAS  PubMed  Google Scholar 

  • Chono K, Katsumata K, Suzuki H et al (2013) Synergistic activity of amenamevir (ASP2151) with nucleoside analogs against herpes simplex virus types 1 and 2 and varicella-zoster virus. Antivir Res 97:154–160

    Article  CAS  PubMed  Google Scholar 

  • Coen DM, Schaffer PA, Furman PA et al (1982) Biochemical and genetic analysis of acyclovir-resistant mutants of herpes simplex virus type 1. Am J Med 73:351–360

    Article  CAS  PubMed  Google Scholar 

  • Cohen JI, Seidel KE (1993) Generation of varicella-zoster virus (VZV) and viral mutants from cosmid DNAs: VZV thymidylate synthetase is not essential for replication in vitro. Proc Natl Acad Sci U S A 90:7376–7380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crute JJ, Grygon CA, Hargrave KD et al (2002) Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nat Med 8:386–391

    Article  CAS  PubMed  Google Scholar 

  • Cundy KC (1999) Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin Pharmacokinet 36:127–143

    Article  CAS  PubMed  Google Scholar 

  • Daikoku T, Tannai H, Honda M et al (2016) Subclinical generation of acyclovir-resistant herpes simplex virus with mutation of homopolymeric guanosine strings during acyclovir therapy. J Dermatol Sci 82:160–165

    Article  CAS  PubMed  Google Scholar 

  • De Clercq E (2004) Discovery and development of BVDU (brivudin) as a therapeutic for the treatment of herpes zoster. Biochem Pharmacol 68:2301–2315

    Article  CAS  PubMed  Google Scholar 

  • De Clercq E (2005) (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU). Med Res Rev 25:1–20

    Article  CAS  PubMed  Google Scholar 

  • De Clercq E, Descamps J, Ogata M et al (1982) In vitro susceptibility of varicella-zoster virus to E-5-(2-bromovinyl)-2′-deoxyuridine and related compounds. Antimicrob Agents Chemother 21:33–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Disease NIOaaI Herpes Drugs in Development (n.d.) In: Division of AIDS Anti-HIV/OI/TB Therapeutics Database

    Google Scholar 

  • Drake JW (1993) Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A 90:4171–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunning J, Kennedy SB, Antierens A et al (2016) Experimental treatment of Ebola virus disease with Brincidofovir. PLoS One 11:e0162199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elion GB (1989) Nobel lecture in physiology or medicine—1988. The purine path to chemotherapy. In Vitro Cell Dev Biol 25:321–330

    Article  CAS  PubMed  Google Scholar 

  • Elion GB, Furman PA, Fyfe JA et al (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A 74:5716–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englund JA, Zimmerman ME, Swierkosz EM et al (1990) Herpes simplex virus resistant to acyclovir. A study in a tertiary care center. Ann Intern Med 112:416–422

    Article  CAS  PubMed  Google Scholar 

  • Furuta Y, Takahashi K, Fukuda Y et al (2002) In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother 46:977–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda M, Okuda T, Hasegawa T et al (2001) Effect of long-term, low-dose acyclovir suppressive therapy on susceptibility to acyclovir and frequency of acyclovir resistance of herpes simplex virus type 2. Antivir Chem Chemother 12:233–239

    Article  CAS  PubMed  Google Scholar 

  • Ida M, Kageyama S, Sato H et al (1999) Emergence of resistance to acyclovir and penciclovir in varicella-zoster virus and genetic analysis of acyclovir-resistant variants. Antivir Res 40:155–166

    Article  CAS  PubMed  Google Scholar 

  • Jackson GG, Muldoon RL, Akers LW (1963) Serological evidence for prevention of influenzal infection in volunteers by an anti-influenzal drug adamantanamine hydrochloride. Antimicrob Agents Chemoter (Bethesda) 161:703–707

    CAS  Google Scholar 

  • James SH, Prichard MN (2014) Current and future therapies for herpes simplex virus infections: mechanism of action and drug resistance. Curr Opin Virol 8:54–61

    Article  CAS  PubMed  Google Scholar 

  • James SH, Larson KB, Acosta EP et al (2015) Helicase-primase as a target of new therapies for herpes simplex virus infections. Clin Pharmacol Ther 97:66–78

    Article  CAS  PubMed  Google Scholar 

  • Kamiyama T, Kurokawa M, Shiraki K (2001) Characterization of the DNA polymerase gene of varicella-zoster viruses resistant to acyclovir. J Gen Virol 82:2761–2765

    Article  CAS  PubMed  Google Scholar 

  • Kawai H, Yoshida I, Suzutani T (1993) Antiviral activity of 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil against thymidine kinase negative strains of varicella-zoster virus. Microbiol Immunol 37:877–882

    Article  CAS  PubMed  Google Scholar 

  • Kern ER, Richards JT, Overall JC Jr et al (1981) A comparison of phosphonoacetic acid and phosphonoformic acid activity in genital herpes simplex virus type 1 and type 2 infections of mice. Antivir Res 1:225–235

    Article  CAS  PubMed  Google Scholar 

  • Kleymann G, Fischer R, Betz UA et al (2002) New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nat Med 8:392–398

    Article  CAS  PubMed  Google Scholar 

  • Koszalka P, Tilmanis D, Hurt AC (2017) Influenza antivirals currently in late-phase clinical trial. Influenza Other Respir Viruses 1(3):240–246

    Article  CAS  Google Scholar 

  • Larder BA, Darby G (1986) Susceptibility to other antiherpes drugs of pathogenic variants of herpes simplex virus selected for resistance to acyclovir. Antimicrob Agents Chemother 29:894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littler E, Stuart AD, Chee MS (1992) Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature 358:160–162

    Article  CAS  PubMed  Google Scholar 

  • Machida H, Kuninaka A, Yoshino H (1982) Inhibitory effects of antiherpesviral thymidine analogs against varicella-zoster virus. Antimicrob Agents Chemother 21:358–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miwa N, Kurosaki K, Yoshida Y et al (2005) Comparative efficacy of acyclovir and vidarabine on the replication of varicella-zoster virus. Antivir Res 65:49–55

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, Kurokawa M, Matsuo K et al (2004) Suppression of generation and replication of acyclovir-resistant herpes simplex virus by a sensitive virus. J Med Virol 72:112–120

    Article  PubMed  Google Scholar 

  • Ostrander M, Cheng YC (1980) Properties of herpes simplex virus type 1 and type 2 DNA polymerase. Biochim Biophys Acta 609:232–245

    Article  CAS  PubMed  Google Scholar 

  • Parris DS, Harrington JE (1982) Herpes simplex virus variants restraint to high concentrations of acyclovir exist in clinical isolates. Antimicrob Agents Chemother 22:71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrone M, Percivalle E, Secchi M et al (2003) The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. J Gen Virol 84:3359–3370

    Article  CAS  PubMed  Google Scholar 

  • Reyes M, Shaik NS, Graber JM et al (2003) Acyclovir-resistant genital herpes among persons attending sexually transmitted disease and human immunodeficiency virus clinics. Arch Intern Med 163:76–80

    Article  PubMed  Google Scholar 

  • Safrin S, Cherrington J, Jaffe HS (1997) Clinical uses of cidofovir. Rev Med Virol 7:145–156

    Article  CAS  PubMed  Google Scholar 

  • Sasadeusz JJ, Tufaro F, Safrin S et al (1997) Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. J Virol 71:3872–3878

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz PM, Novack J, Shipman C Jr et al (1984) Metabolism of arabinosyladenine in herpes simplex virus-infected and uninfected cells. Correlation with inhibition of DNA synthesis and role in antiviral selectivity. Biochem Pharmacol 33:2431–2438

    Article  CAS  PubMed  Google Scholar 

  • Shipman C Jr, Smith SH, Carlson RH et al (1976) Antiviral activity of arabinosyladenine and arabinosylhypoxanthine in herpes simplex virus-infected KB cells: selective inhibition of viral deoxyribonucleic acid synthesis in synchronized suspension cultures. Antimicrob Agents Chemother 9:120–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiraki K (2017) Helicase-primase inhibitor amenamevir for herpesvirus infection: towards practical application for treating herpes zoster. Drugs Today 53(11):573

    Article  CAS  PubMed  Google Scholar 

  • Shiraki K, Namazue J, Okuno T, Yamanishi K, Takahashi M (1990) Novel sensitivity of acyclovir-resistant varicella-zoster virus to anti-herpetic drugs. Antivir Chem Chemother 1:373–375

    Article  CAS  Google Scholar 

  • Shiraki K, Ochiai H, Namazue J et al (1992) Comparison of antiviral assay methods using cell-free and cell-associated varicella-zoster virus. Antivir Res 18:209–214

    Article  CAS  PubMed  Google Scholar 

  • Spector FC, Liang L, Giordano H et al (1998) Inhibition of herpes simplex virus replication by a 2-amino thiazole via interactions with the helicase component of the UL5-UL8-UL52 complex. J Virol 72:6979–6987

    PubMed  PubMed Central  CAS  Google Scholar 

  • Stranska R, Schuurman R, Nienhuis E et al (2005) Survey of acyclovir-resistant herpes simplex virus in the Netherlands: prevalence and characterization. J Clin Virol 32:7–18

    Article  CAS  PubMed  Google Scholar 

  • Sullivan V, Talarico CL, Stanat SC et al (1992) A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature 358:162–164

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Okuda T, Shiraki K (2006) Synergistic antiviral activity of acyclovir and vidarabine against herpes simplex virus types 1 and 2 and varicella-zoster virus. Antivir Res 72:157–161

    Article  CAS  PubMed  Google Scholar 

  • Tyring S, Wald A, Zadeikis N et al (2012) ASP2151 for the treatment of genital herpes: a randomized, double-blind, placebo- and valacyclovir-controlled, dose-finding study. J Infect Dis 205:1100–1110

    Article  CAS  PubMed  Google Scholar 

  • Vere Hodge RA, Cheng Y-C (1993) The mode of action of penciclovir. Antivir Chem Chemother 4:13–24

    Article  Google Scholar 

  • Von Itzstein M, Wu WY, Kok GB et al (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363:418–423

    Article  Google Scholar 

  • Wald A, Corey L, Timmler B et al (2014) Helicase-primase inhibitor pritelivir for HSV-2 infection. N Engl J Med 370:201–210

    Article  CAS  PubMed  Google Scholar 

  • Wald A, Timmler B, Magaret A et al (2016) Effect of pritelivir compared with valacyclovir on genital HSV-2 shedding in patients with frequent recurrences: a randomized clinical trial. JAMA 316:2495–2503

    Article  CAS  PubMed  Google Scholar 

  • Wassilew SW, Wutzler P, Brivddin Herpes Zoster Study G (2003) Oral brivudin in comparison with acyclovir for herpes zoster: a survey study on postherpetic neuralgia. Antivir Res 59:57–60

    Article  CAS  Google Scholar 

  • Whitley RJ, Alford CA, Hirsch MS et al (1986) Vidarabine versus acyclovir therapy in herpes simplex encephalitis. N Engl J Med 314:144–149

    Article  CAS  PubMed  Google Scholar 

  • Yajima M, Yamada H, Takemoto M et al (2017) Profile of anti-herpetic action of ASP2151 (amenamevir) as a helicase-primase inhibitor. Antivir Res 139:95–101

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Konno K, Mori S et al (1989) Mechanism of selective inhibition of varicella zoster virus replication by 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl)uracil. Mol Pharmacol 36:312–316

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimiyasu Shiraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiraki, K. (2018). Antiviral Drugs Against Alphaherpesvirus. In: Kawaguchi, Y., Mori, Y., Kimura, H. (eds) Human Herpesviruses. Advances in Experimental Medicine and Biology, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-10-7230-7_6

Download citation

Publish with us

Policies and ethics