Skip to main content

Molegro Virtual Docker for Docking

  • Protocol
  • First Online:
Docking Screens for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2053))

Abstract

Molegro Virtual Docker is a protein-ligand docking simulation program that allows us to carry out docking simulations in a fully integrated computational package. MVD has been successfully applied to hundreds of different proteins, with docking performance similar to other docking programs such as AutoDock4 and AutoDock Vina. The program MVD has four search algorithms and four native scoring functions. Considering that we may have water molecules or not in the docking simulations, we have a total of 32 docking protocols. The integration of the programs SAnDReS (https://github.com/azevedolab/sandres) and MVD opens the possibility to carry out a detailed statistical analysis of docking results, which adds to the native capabilities of the program MVD. In this chapter, we describe a tutorial to carry out docking simulations with MVD and how to perform a statistical analysis of the docking results with the program SAnDReS. To illustrate the integration of both programs, we describe the redocking simulation focused the cyclin-dependent kinase 2 in complex with a competitive inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarthy M, Singh SK (2018) Discovery of potent inhibitors for the inhibition of dengue envelope protein: an in silico approach. Curr Top Med Chem 18:1585–1602

    Article  CAS  PubMed  Google Scholar 

  2. Sehgal SA, Hammad MA, Tahir RA, Akram HN, Ahmad F (2018) Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design. Curr Neuropharmacol 16:649–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zloh M, Kirton SB (2018) The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions. Future Med Chem 10:423–432

    Article  CAS  PubMed  Google Scholar 

  4. Ishiki HM, Filho JMB, da Silva MS, Scotti MT, Scotti L (2018) Computer-aided drug design applied to Parkinson targets. Curr Neuropharmacol 16:865–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baig MH, Ahmad K, Rabbani G, Danishuddin M, Choi I (2018) Computer aided drug design and its application to the development of potential drugs for neurodegenerative disorders. Curr Neuropharmacol 16:740–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crespo A, Rodriguez-Granillo A, Lim VT (2017) Quantum-mechanics methodologies in drug discovery: applications of docking and scoring in lead optimization. Curr Top Med Chem 17:2663–2680

    Article  CAS  PubMed  Google Scholar 

  7. Ramesh M, Dokurugu YM, Thompson MD, Soliman ME (2017) Therapeutic, molecular and computational aspects of novel monoamine oxidase (MAO) inhibitors. Comb Chem High Throughput Screen 20:492–509

    Article  CAS  PubMed  Google Scholar 

  8. Abdolmaleki A, Ghasemi F, Ghasemi JB (2017) Computer-aided drug design to explore cyclodextrin therapeutics and biomedical applications. Chem Biol Drug Des 89:257–268

    Article  CAS  PubMed  Google Scholar 

  9. Ganesan A, Barakat K (2017) Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin Drug Discovery 12:407–425

    Article  CAS  Google Scholar 

  10. Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hung CL, Chen CC (2014) Computational approaches for drug discovery. Drug Dev Res 75:412–418

    Article  CAS  PubMed  Google Scholar 

  12. Tabeshpour J, Sahebkar A, Zirak MR, Zeinali M, Hashemzaei M, Rakhshani S et al (2018) Computer-aided drug design and drug pharmacokinetic prediction: a mini-review. Curr Pharm Des 24:3014–3019

    Article  CAS  PubMed  Google Scholar 

  13. Zhong F, Xing J, Li X, Liu X, Fu Z, Xiong Z et al (2018) Artificial intelligence in drug design. Sci China Life Sci 61:1191–1204

    Article  PubMed  Google Scholar 

  14. Suryanarayanan V, Panwar U, Chandra I, Singh SK (2018) De novo design of ligands using computational methods. Methods Mol Biol 1762:71–86

    Article  CAS  PubMed  Google Scholar 

  15. Park H, Jung HY, Mah S, Hong S (2018) Systematic computational design and identification of low picomolar inhibitors of Aurora kinase a. J Chem Inf Model 58:700–709

    Article  CAS  PubMed  Google Scholar 

  16. Abdolmaleki A, Ghasemi JB, Ghasemi F (2017) Computer aided drug design for multi-target drug design: SAR/QSAR, molecular docking and pharmacophore methods. Curr Drug Targets 18:556–575

    Article  CAS  PubMed  Google Scholar 

  17. Zheng X, Liu Z, Li D, Wang E, Wang J (2013) Rational drug design: the search for Ras protein hydrolysis intermediate conformation inhibitors with both affinity and specificity. Curr Pharm Des 19:2246–2258

    Article  CAS  PubMed  Google Scholar 

  18. Jayadeepa RM, Sharma S (2011) Computational models for 5αR inhibitors for treatment of prostate cancer: review of previous works and screening of natural inhibitors of 5αR2. Curr Comput Aided Drug Des 7:231–237

    Article  CAS  PubMed  Google Scholar 

  19. Michel J, Essex JW (2010) Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J Comput Aided Mol Des 24:639–658

    Article  CAS  PubMed  Google Scholar 

  20. Reddy MR, Erion MD (2005) Computer-aided drug design strategies used in the discovery of fructose 1, 6-bisphosphatase inhibitors. Curr Pharm Des 11:283–294

    Article  CAS  PubMed  Google Scholar 

  21. Irwin JJ, Shoichet BK (2005) ZINC--a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:668–672

    Article  Google Scholar 

  24. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D et al (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:901–906

    Article  Google Scholar 

  25. Freitas PG, Elias TC, Pinto IA, Costa LT, de Carvalho PVSD, Omote DQ et al (2018) Computational approach to the discovery of phytochemical molecules with therapeutic potential targets to the PKCZ protein. Lett Drug Des Discovery 15:488–499

    Article  CAS  Google Scholar 

  26. Teles CB, Moreira-Dill LS, Silva Ade A, Facundo VA, de Azevedo WF Jr, da Silva LH et al (2015) A lupane-triterpene isolated from Combretum leprosum Mart. fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC Complement Altern Med 15:165

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sá MS, de Menezes MN, Krettli AU, Ribeiro IM, Tomassini TC, Ribeiro dos Santos R et al (2011) Antimalarial activity of physalins B, D, F, and G. J Nat Prod 74:2269–2272

    Article  PubMed  Google Scholar 

  28. Wong CF, McCammon JA (2003) Protein flexibility and computer-aided drug design. Annu Rev Pharmacol Toxicol 43:31–45

    Article  CAS  PubMed  Google Scholar 

  29. Wishart DS (2008) Identifying putative drug targets and potential drug leads: starting points for virtual screening and docking. Methods Mol Biol 443:333–351

    Article  CAS  PubMed  Google Scholar 

  30. Śledź P, Caflisch A (2018) Protein structure-based drug design: from docking to molecular dynamics. Curr Opin Struct Biol 48:93–102

    Article  PubMed  Google Scholar 

  31. de Azevedo WF Jr (2011) Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr Med Chem 18:1353–1366

    Article  PubMed  Google Scholar 

  32. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202

    CAS  PubMed  Google Scholar 

  33. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    Article  CAS  PubMed  Google Scholar 

  34. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al (1998) Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  35. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins 55:288–304

    Article  CAS  PubMed  Google Scholar 

  38. Yang JM, Shen TW (2005) A pharmacophore-based evolutionary approach for screening selective estrogen receptor modulators. Proteins 59:205–220

    Article  PubMed  Google Scholar 

  39. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    Article  CAS  PubMed  Google Scholar 

  40. Heberlé G, de Azevedo WF Jr (2011) Bio-inspired algorithms applied to molecular docking simulations. Curr Med Chem 18:1339–1352

    Article  PubMed  Google Scholar 

  41. De Azevedo WF Jr (2010) MolDock applied to structure-based virtual screening. Curr Drug Targets 11:327–334

    Article  PubMed  Google Scholar 

  42. Bitencourt-Ferreira G, de Azevedo WF Jr (2018) Development of a machine-learning model to predict Gibbs free energy of binding for protein-ligand complexes. Biophys Chem 240:63–69

    CAS  PubMed  Google Scholar 

  43. de Ávila MB, de Azevedo WF Jr (2018) Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase. Chem Biol Drug Des 92:1468–1474

    Article  PubMed  Google Scholar 

  44. Russo S, de Azevedo WF (2019) Advances in the understanding of the cannabinoid receptor 1—focusing on the inverse agonists interactions. Curr Med Chem. https://doi.org/10.2174/0929867325666180417165247

    Article  PubMed  Google Scholar 

  45. Amaral MEA, Nery LR, Leite CE, de Azevedo Junior WF, Campos MM (2018) Pre-clinical effects of metformin and aspirin on the cell lines of different breast cancer subtypes. Invest New Drugs 36:782–796

    Article  CAS  PubMed  Google Scholar 

  46. Pintro VO, Azevedo WF (2017) Optimized virtual screening workflow. towards target-based polynomial scoring functions for HIV-1 protease. Comb Chem High Throughput Screen 20:820–827

    Article  CAS  PubMed  Google Scholar 

  47. Heck GS, Pintro VO, Pereira RR, de Ávila MB, Levin NMB, de Azevedo WF (2017) Supervised machine learning methods applied to predict ligand-binding affinity. Curr Med Chem 24:2459–2470

    Article  CAS  PubMed  Google Scholar 

  48. Coracini JD, de Azevedo WF Jr (2014) Shikimate kinase, a protein target for drug design. Curr Med Chem 21:592–604

    Article  CAS  PubMed  Google Scholar 

  49. Moraes FP, de Azevedo WF Jr (2012) Targeting imidazoline site on monoamine oxidase B through molecular docking simulations. J Mol Model 18:3877–3886

    Article  CAS  PubMed  Google Scholar 

  50. Soares MB, Silva CV, Bastos TM, Guimarães ET, Figueira CP, Smirlis D et al (2012) Anti-Trypanosoma cruzi activity of nicotinamide. Acta Trop 12:224–229

    Article  Google Scholar 

  51. Vianna CP, de Azevedo WF Jr (2012) Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. J Mol Model 18:755–764

    Article  CAS  PubMed  Google Scholar 

  52. Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  53. Murray AW (1994) Cyclin-dependent kinases: regulators of the cell cycle and more. Chem Biol 1:191–195

    Article  CAS  PubMed  Google Scholar 

  54. Volkart PA, Bitencourt-Ferreira G, Souto AA, de Azevedo WF (2019) Cyclin-dependent kinase 2 in cellular senescence and cancer. A structural and functional review. Curr Drug Targets 20(7):716–726. https://doi.org/10.2174/1389450120666181204165344

    Article  CAS  PubMed  Google Scholar 

  55. Kim SH, Schulze-Gahmen U, Brandsen J, de Azevedo Júnior WF (1996) Structural basis for chemical inhibition of CDK2. Prog Cell Cycle Res 2:137–145

    Article  CAS  PubMed  Google Scholar 

  56. De Azevedo WF Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH (1996) Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci U S A 93:2735–2740

    Article  PubMed  PubMed Central  Google Scholar 

  57. Canduri F, de Azevedo WF Jr (2005) Structural basis for interaction of inhibitors with cyclin-dependent kinase 2. Curr Comput Aided Drug Des 1:53–64

    Article  CAS  Google Scholar 

  58. Krystof V, Cankar P, Frysová I, Slouka J, Kontopidis G, Dzubák P (2006) 4-arylazo-3,5-diamino-1H-pyrazole CDK inhibitors: SAR study, crystal structure in complex with CDK2, selectivity, and cellular effects. J Med Chem 49:6500–6509

    Article  CAS  PubMed  Google Scholar 

  59. Levin NMB, Pintro VO, Bitencourt-Ferreira G, Mattos BB, Silvério AC, de Azevedo WF Jr (2018) Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys Chem 235:1–8

    Article  CAS  PubMed  Google Scholar 

  60. de Ávila MB, Xavier MM, Pintro VO, de Azevedo WF (2017) Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem Biophys Res Commun 494:305–310

    Article  PubMed  Google Scholar 

  61. Levin NM, Pintro VO, de Ávila MB, de Mattos BB, De Azevedo WF Jr (2017) Understanding the structural basis for inhibition of cyclin-dependent kinases. New pieces in the molecular puzzle. Curr Drug Targets 18:1104–1111

    Article  PubMed  Google Scholar 

  62. De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH (1993) Crystal structure of cyclin-dependent kinase 2. Nature 363:595–602

    Article  PubMed  Google Scholar 

  63. Schulze-Gahmen U, De Bondt HL, Kim SH (1996) High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design. J Med Chem 39:4540–4546

    Article  CAS  PubMed  Google Scholar 

  64. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  Google Scholar 

  65. Nelder JA, Mead RA (1965) Simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  66. Korb O, Stutzle T, Exner TE (2009) Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inf Model 49:84–96

    Article  CAS  PubMed  Google Scholar 

  67. De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH (1997) Inhibition of cyclin-dependent kinases by purine analogues: crystal structure of human CDK2 complexed with roscovitine. Eur J Biochem 243:518–526

    Article  PubMed  Google Scholar 

  68. Xavier MM, Heck GS, de Avila MB, Levin NM, Pintro VO, Carvalho NL et al (2016) SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Comb Chem High Throughput Screen 19:801–812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq (Brazil) (308883/2014-4). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior—Brasil (CAPES)—Finance Code 001. GB-F acknowledges support from PUCRS/BPA fellowship. WFA is a researcher for CNPq (Brazil) (Process Numbers: 308883/2014-4 and 309029/2018-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Filgueira de Azevedo Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bitencourt-Ferreira, G., de Azevedo, W.F. (2019). Molegro Virtual Docker for Docking. In: de Azevedo Jr., W. (eds) Docking Screens for Drug Discovery. Methods in Molecular Biology, vol 2053. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9752-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9752-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9751-0

  • Online ISBN: 978-1-4939-9752-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics