Skip to main content

Analysis of Redox Relationships in the Plant Cell Cycle: Determination of Ascorbate, Glutathione, and Poly(ADPribose)polymerase (PARP) in Plant Cell Cultures

  • Protocol
  • First Online:
Redox-Mediated Signal Transduction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1990))

Abstract

Reactive oxygen species (ROS) and low molecular weight antioxidants, such as glutathione and ascorbate, are powerful signalling molecules that participate in the control of plant growth and development, and modulate progression through the mitotic cell cycle. Enhanced ROS accumulation or low levels of ascorbate or glutathione cause the cell cycle to arrest and halt progression especially through the G1 checkpoint. Plant cell suspension cultures have proved to be particularly useful tools for the study of cell cycle regulation. Here we provide effective and accurate methods for the measurement of changes in the cellular ascorbate and glutathione pools and the activities of related enzymes such poly(ADP-ribose)polymerase (PARP) during mitosis and cell expansion, particularly in cell suspension cultures. These methods can be used in studies seeking to improve current understanding of the roles of redox controls on cell division and cell expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Menges M, Murray JA (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J 2:203–212

    Article  Google Scholar 

  2. Srba M, Černíková A, Opatrný Z, Fischer L (2016) Practical guidelines for the characterization of tobacco BY-2 cell lines. Biol Plant 60(1):13–24

    Article  CAS  Google Scholar 

  3. Van Aken O, Van Breusegem F (2015) Licensed to kill: mitochondria, chloroplasts, and cell death. Trends Plant Sci 20(11):754–766

    Article  Google Scholar 

  4. Meijer M, Murray JAH (2001) Cell cycle controls and the development of plant form. Curr Opin Plant Biol 4:44–49

    Article  CAS  Google Scholar 

  5. Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  CAS  Google Scholar 

  6. Vivancos PD, Wolff T, Markovic J, Pallardó FV, Foyer CH (2010) A nuclear glutathione cycle within the cell cycle. Biochem J 431(2):169–178

    Article  Google Scholar 

  7. Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12(1):97–109

    Article  CAS  Google Scholar 

  8. Potters G, Horemans N, Bellone S, Caubergs RJ, Trost P, Guisez Y, Asard H (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134(4):1479–1487

    Article  CAS  Google Scholar 

  9. Meyer AJ, Fricker MD (2002) Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol 130(4):1927–1937

    Article  CAS  Google Scholar 

  10. Pellny TK, Locato V, Vivancos PD, Markovic J, De Gara L, Pallardó FV, Foyer CH (2009) Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. Mol Plant 2(3):442–456

    Article  CAS  Google Scholar 

  11. Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  CAS  Google Scholar 

  12. Baxter CJ, Redestig H, Schauer N, Repsilber D, Patil KR, Nielsen J, Selbig J, Liu J, Fernie AR, Sweetlove LJ (2007) The metabolic response of heterotrophic Arabidopsis cells to oxidative stress. Plant Physiol 143:312–325

    Article  CAS  Google Scholar 

  13. Desikan R, Soheila AH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127(1):159–172

    Article  CAS  Google Scholar 

  14. Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    Article  CAS  Google Scholar 

  15. Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inze D, Van Breusegem F (2002) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci, USA 100:16113–16118

    Article  Google Scholar 

  16. Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  17. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  Google Scholar 

  18. Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signalling. New Phytol 146:359–388

    Article  CAS  Google Scholar 

  19. de Pinto MC, Tommasi F, De Gara L (2000) Enzymes of the ascorbate biosynthesis and ascorbate-glutathione cycle in cultured cells of tobacco Bright Yellow 2. Plant Physiol Biochem 38(7):541–550

    Article  Google Scholar 

  20. Linster CL, Clarke SG (2008) L-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13(11):567–573

    Article  CAS  Google Scholar 

  21. Wolucka BA, Goossens A, Inzé D (2005) Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 56:2527–2538

    Article  CAS  Google Scholar 

  22. Green MA, Fry SC (2004) Degradation of vitamin C in plant cells via enzymic hydrolysis of 4-O-oxalyl-l-threonate. Nature 433:83–87

    Article  Google Scholar 

  23. Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    CAS  PubMed  Google Scholar 

  24. Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135(3):1471–1479

    Article  CAS  Google Scholar 

  25. Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    Article  CAS  Google Scholar 

  26. Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol. Biochemist 40:537–548

    CAS  Google Scholar 

  27. Cheng J-C, Seeley KA, Sung ZR (1995) RML7 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol 107:365–376

    Article  CAS  Google Scholar 

  28. Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:1013–1016

    Article  CAS  Google Scholar 

  29. Jiang K, Meng YL, Feldman LJ (2003) Quiescent center formation in maize roots is associated withan auxin-regulated oxidising environment. Development 130:1429–1438

    Article  CAS  Google Scholar 

  30. Jiang K, Ballinger T, Li D, Zhang S, Feldman LA (2006) Role for mitochondria in the establishment and maintenance of the Maize root quiescent center. Plant Physiol 140:1118–1125

    Article  CAS  Google Scholar 

  31. Bailly C, Audigier C, Ladonne F, Wagner MH, Coste F, Corbineau F, Come D (2001) Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. J Exp Bot 52:701–708

    Article  CAS  Google Scholar 

  32. De Gara L, de Pinto MC, Moliterni VM, D’Egidio MG (2003) Redox regulation and storage processes during maturation in kernels of Triticum durum. J Exp Bot 54:249–258

    Article  Google Scholar 

  33. Tommasi F, Paciolla C, de Pinto MC, De Gara L (2001) A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J Exp Bot 52:1647–1654

    Article  CAS  Google Scholar 

  34. Córdoba-Pedregosa MC, Cordoba F, Villalba JM, Gonzáles-Reyes JA (2003) Zonal changes in ascorbate and hydrogen peroxide contents, peroxidase, and ascorbate-related enzymes activities in onion roots. Plant Physiol 131:1–10

    Article  Google Scholar 

  35. de Pinto MC, De Gara L (2004) Changes in the ascorbate metabolism of both apoplastic and symplastic spaces are involved in cell differentiation. J Exp Bot 55:2559–2569

    Article  Google Scholar 

  36. Dumville JC, Fry SC (2003) Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217:951–961

    Article  CAS  Google Scholar 

  37. Pignocchi C, Fletcher JE, Barnes J, Foyer CH (2003) The function of ascorbate oxidase (AO) in tobacco (Nicotiana tabacum L.). Plant Physiol 132:1631–1641

    Article  CAS  Google Scholar 

  38. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  39. De Block M, Verduyn C, De Brouwer D, Cornelissen M (2004) Generating stress tolerant crops by economizing energy consumption. Pflanzenschutz-Nachrichten Bayer 57:105–110

    Google Scholar 

  40. Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  41. Andi S, Taguchi F, Toyoda K, Shiraishi T, Ichinose Y (2001) Effect of methyl jasmonate on harpin-induced hypersensitive cell death, generation of hydrogen peroxide and expression of PAL mRNA in tobacco suspension cultured BY-2 cells. Plant Cell Physiol 42:446–449

    Article  CAS  Google Scholar 

  42. Frederickson Matika DE, Loake GJ (2014) Redox regulation in plant immune function. Antioxid Redox Signal 21(9):1373–1388

    Article  CAS  Google Scholar 

  43. Huang S, Van Aken O, Schwarzländer M, Belt K, Millar AH (2016) The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol 171(3):1551–1559

    Article  CAS  Google Scholar 

  44. Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2007) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59(3):501–520

    Article  Google Scholar 

  45. Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E, Stals H, Van Isterdael G, Verkest A, Neirynck S, Buffel Y, De Bodt S (2010) Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 6(1):397

    PubMed  PubMed Central  Google Scholar 

  46. Gleason C, Huang S, Thatcher LF, Foley RC, Anderson CR, Carroll AJ, Millar AH, Singh KB (2011) Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense. Proc Natl Acad Sci 108(26):10768–10773

    Article  CAS  Google Scholar 

  47. De Gara L, de Pinto MC, Tommasi F (2003) The antioxidant system vis à vis reactive oxygen species during plant pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  Google Scholar 

  48. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  49. de Pinto MC, Tommasi F, De Gera L (2002) Changes in the antioxidant systems as part of the signalling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco BY-2 cells. Plant Physiol 130:698–708

    Article  Google Scholar 

  50. de Pinto MC, Paradiso A, Leonetti P, De Gara L (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48:784–795

    Article  Google Scholar 

  51. Vacca RA, de Pinto MC, Valenti D, Passerella S, Marra E, De Gara L (2004) Reactive oxygen species production, impairment of glucose oxidation and cytosolic ascorbate peroxidase are early events in heat-shock induced programmed cell death in tobacco BY-2 cells. Plant Physiol 134:1100–1112

    Article  CAS  Google Scholar 

  52. Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650

    Article  CAS  Google Scholar 

  53. Paradiso A, De Pinto MC, Locato V, De Gara L (2012) Galactone-γ-lactone-dependent ascorbate biosynthesis alters wheat kernel maturation. Plant Biol 14(4):652–658

    Article  CAS  Google Scholar 

  54. May MJ, Leaver CJ (1993) Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol 103:621–627

    Article  CAS  Google Scholar 

  55. Foyer CH, Rowell J, Walker DA (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239–244

    Article  CAS  Google Scholar 

  56. Noctor G, Foyer CH (1998) Simultaneous measurement of foliar glutathione, γ-glutamyl cysteine and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal Biochem 264:98–110

    Article  CAS  Google Scholar 

  57. Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complex III and IV. Plant Physiol 123:335–343

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine H. Foyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Foyer, C.H., Pellny, T.K., Locato, V., Hull, J., De Gara, L. (2019). Analysis of Redox Relationships in the Plant Cell Cycle: Determination of Ascorbate, Glutathione, and Poly(ADPribose)polymerase (PARP) in Plant Cell Cultures. In: Hancock, J., Conway, M. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology, vol 1990. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9463-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9463-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9461-8

  • Online ISBN: 978-1-4939-9463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics