Skip to main content

A Method for Investigating the Pseudomonas syringae-Arabidopsis thaliana Pathosystem Under Various Light Environments

  • Protocol
  • First Online:
Plant Innate Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1991))

Abstract

Arabidopsis thaliana and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) comprise an effective model pathosystem for resolving mechanisms behind numerous aspects of plant innate immunity. Following the characterization of key molecular components over the past decades, we may begin investigating defense signaling under various environmental conditions to gain a more holistic understanding of the underlying processes. As a critical regulator of growth and development, exploration into the influence of light on pathogenesis is a logical step toward a systems-level understanding of innate immunity. Based on methods described previously, here we describe a method for investigating plant immune responses under various light environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiorucci AS, Fankhauser C (2017) Plant strategies for enhancing access to sunlight. Curr Biol 27(17):R931–R940. https://doi.org/10.1016/j.cub.2017.05.085

    Article  CAS  PubMed  Google Scholar 

  2. Huot B, Yao J, Montgomery BL et al (2014) Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant 7(8):1267–1287. https://doi.org/10.1093/mp/ssu049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hua J (2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16(4):406–413. https://doi.org/10.1016/j.pbi.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  4. Karpinski S, Szechynska-Hebda M, Wituszynska W et al (2013) Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant Cell Environ 36(4):736–744. https://doi.org/10.1111/pce.12018

    Article  CAS  PubMed  Google Scholar 

  5. Ballare CL (2014) Light regulation of plant defense. Annu Rev Plant Biol 65(1):335–363. https://doi.org/10.1146/annurev-arplant-050213-040145

    Article  CAS  PubMed  Google Scholar 

  6. Kangasjarvi S, Tikkanen M, Durian G et al (2014) Photosynthetic light reactions—an adjustable hub in basic production and plant immunity signaling. Plant Physiol Biochem 81:128–134. https://doi.org/10.1016/j.plaphy.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  7. Trotta A, Rahikainen M, Konert G et al (2014) Signalling crosstalk in light stress and immune reactions in plants. Philos Trans R Soc Lond Ser B Biol Sci 369(1640):20130235. https://doi.org/10.1098/rstb.2013.0235

    Article  CAS  Google Scholar 

  8. Jeong R-D, Kachroo A, Kachroo P (2010) Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis. Plant Signal Behav 5(11):15041509. https://doi.org/10.4161/psb.5.11.13705

    Article  CAS  Google Scholar 

  9. Jeong RD, Chandra-Shekara AC, Barman SR et al (2010) Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 107(30):13538–13543. https://doi.org/10.1073/pnas.1004529107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yao J, Withers J, He SY (2013) Pseudomonas syringae infection assays in Arabidopsis. Methods Mol Biol 1011:63–81. https://doi.org/10.1007/978-1-62703-414-2_6

    Article  CAS  PubMed  Google Scholar 

  11. Tornero P, Dangl JL (2001) A high-throughput method for quantifying growth of phytopathogenic bacteria in Arabidopsis thaliana. Plant J 28(4):475–481

    Article  CAS  Google Scholar 

  12. Ishiga Y, Ishiga T, Uppalapati SR et al (2011) Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions. Plant Methods 7:32. https://doi.org/10.1186/1746-4811-7-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Leuchtman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Leuchtman, D.L., Shumate, A.D., Gassmann, W., Liscum, E. (2019). A Method for Investigating the Pseudomonas syringae-Arabidopsis thaliana Pathosystem Under Various Light Environments. In: Gassmann, W. (eds) Plant Innate Immunity. Methods in Molecular Biology, vol 1991. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9458-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9458-8_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9457-1

  • Online ISBN: 978-1-4939-9458-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics