Skip to main content

Quantifying Activity for Repair of the DNA Lesion 8-Oxoguanine by Oxoguanine Glycosylase 1 (OGG1) in Mouse Adult and Fetal Brain Nuclear Extracts Using Biotin-Labeled DNA

  • Protocol
  • First Online:
Developmental Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1965))

  • 1599 Accesses

Abstract

The reactive oxygen species (ROS)-initiated DNA lesion 8-oxoguanine (8-oxoG) is commonly used as a biomarker to measure oxidative stress levels in tissue samples from animals and humans. This lesion also can play a pathogenic role in cancer, birth defects, and neurodegeneration, among other disorders. The level of 8-oxoG may be enhanced due to ROS-initiating environmental factors (e.g., drugs, gamma radiation, microbial infection) or due to a decrease in the activity of oxoguanine glycosylase 1 (OGG1), an enzyme that repairs this lesion. Measurement of the activity of OGG1 can be useful in elucidating mechanisms and complements measurements of 8-oxoG levels in tissues of interest. This protocol describes an assay for measuring the activity of 8-oxoG in mouse adult and fetal brain tissues. Briefly, a synthetic duplex containing the 8-oxoG residue in one of the nucleotides (49-mer), labeled with biotin at the 3′-end, is incubated with protein extract from the tissue of interest containing OGG1, which cleaves the 8-oxoG residue producing a cleavage product of ~27-mer. The percent cleavage quantifies the activity of OGG1 in that tissue. The biotin tag allows rapid and sensitive detection of the cleavage product via chemiluminescence, avoiding the problems of safety and short half-lives of radionuclides encountered in assays employing a radioactively-labeled substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJ, Perstin J, Preston TJ, Wiley MJ, Wong AW (2009) Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108:4–18

    Article  CAS  Google Scholar 

  2. Wells PG, Miller-Pinsler L, Shapiro AM (2014) Impact of oxidative stress on development. In: Dennery PA, Buonocore G, Saugstad O (eds) Perinatal and prenatal disorders. Humana Press, Springer Science, Berlin, pp 1–37

    Google Scholar 

  3. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  Google Scholar 

  4. Dennery PA (2002) Effects of oxidative stress on embryonic development. Birth Defects Res C Embryo Today 81:155–162

    Article  Google Scholar 

  5. Wells PG, McCallum GP, Miller L, Siu M, Sweeting JN (2013) Oxidative stress and species differences in the metabolism, developmental toxicity and carcinogenic potential of methanol and ethanol. In: Clary JJ (ed) The toxicology of methanol. John Wiley & Sons, Hoboken, NJ, pp 169–253

    Chapter  Google Scholar 

  6. Wells PG, Bhatia S, Drake DM, Miller-Pinsler L (2016) Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. Birth Defects Res C Embryo Today 108:108–130

    Article  CAS  Google Scholar 

  7. Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF Jr (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181:1129–1139

    Article  CAS  Google Scholar 

  8. Ali S, Young J, Wallace C, Gresack J, Jeste D, Geyer M, Dugan L, Risbrough V (2011) Initial evidence linking synaptic superoxide production with poor short-term memory in aged mice. Brain Res 1368:65–70

    Article  CAS  Google Scholar 

  9. Abdel-Rahman E, Mahmoud A, Aaliya A, Radwan Y, Yasseen B, Al-Okda A, Atwa A, Elhanafy E, Habashy M, Ali S (2016) Resolving contributions of oxygen-consuming and ROS-generating enzymes at the synapse. Oxidative Med Cell Longev 2016:1–7

    Article  Google Scholar 

  10. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    Article  CAS  Google Scholar 

  11. Hansen JM, Harris C (2013) Redox control of teratogenesis. Reprod Toxicol 35:165

    Article  CAS  Google Scholar 

  12. Massaad C, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14:2013–2054

    Article  CAS  Google Scholar 

  13. Abramov JP, Tran A, Shapiro AM, Wells PG (2012) Protective role of endogenous catalase in baseline and phenytoin-enhanced neurodevelopmental and behavioral deficits initiated in utero and in aged mice. Reprod Toxicol 33:361–373

    Article  CAS  Google Scholar 

  14. Abramov JP, Wells PG (2011) Embryoprotective role of endogenous catalase in acatalasemic and human catalase-expressing mouse embryos exposed in culture to developmental and phenytoin-enhanced oxidative stress. Toxicol Sci 120:428–438

    Article  CAS  Google Scholar 

  15. Abramov JP, Wells PG (2011) Embryonic catalase protects against endogenous and phenytoin-enhanced DNA oxidation and embryopathies in acatalasemic and human catalase-expressing mice. FASEB J 25:2188–2200

    Article  CAS  Google Scholar 

  16. Nicol CJ, Zielenski J, Tsui LC, Wells PG (2000) An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. FASEB J 14:111–127

    Article  CAS  Google Scholar 

  17. Miller-Pinsler L, Pinto DJ, Wells PG (2015) Oxidative DNA damage in the in utero initiation of postnatal neurodevelopmental deficits by normal fetal and ethanol-enhanced oxidative stress in oxoguanine glycosylase 1 knockout mice. Free Radic Biol Med 78:23–29

    Article  CAS  Google Scholar 

  18. Miller-Pinsler L, Wells PG (2016) Deficient DNA repair exacerbates ethanol-initiated DNA oxidation and embryopathies in ogg1 knockout mice: gender risk and protection by a free radical spin trapping agent. Arch Toxicol 90:415–425

    Article  CAS  Google Scholar 

  19. Shapiro A, Miller-Pinsler L, Wells P (2016) Breast cancer 1 (BRCA1)-deficient embryos develop normally but are more susceptible to ethanol-initiated DNA damage and embryopathies. Redox Biol 7:30–38

    Article  CAS  Google Scholar 

  20. Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH (1996) Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet 12:191–194

    Article  CAS  Google Scholar 

  21. Pao G, Zhu Q, Perez-Garcia C, Chou S, Suh H, Gage F, O’Leary D, Verma I (2014) Role of BRCA1 in brain development. PNAS 111:E1240–E1248

    Article  CAS  Google Scholar 

  22. Miller L, Shapiro AM, Wells PG (2013) Embryonic catalase protects against ethanol-initiated DNA oxidation and teratogenesis in acatalasemic and human catalase-expressing mice. Toxicol Sci 134:400–411

    Article  CAS  Google Scholar 

  23. Dong J, Sulik KK, Chen SY (2010) The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol Lett 193:94–100

    Article  CAS  Google Scholar 

  24. Cadet JL, Krasnova IN (2009) Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol 88:101–119

    Article  CAS  Google Scholar 

  25. Jeng W, Wong AW, Ting-A-Kee R, Wells PG (2005) Methamphetamine-enhanced embryonic oxidative DNA damage and neurodevelopmental deficits. Free Radic Biol Med 39:317–326

    Article  CAS  Google Scholar 

  26. Wong AW, McCallum GP, Jeng W, Wells PG (2008) Oxoguanine glycosylase 1 protects against methamphetamine-enhanced fetal brain oxidative DNA damage and neurodevelopmental deficits. J Neurosci 28:9047–9054

    Article  CAS  Google Scholar 

  27. Winn LM, Wells PG (1995) Phenytoin-initiated DNA oxidation in murine embryo culture, and embryo protection by the antioxidative enzymes superoxide dismutase and catalase: evidence for reactive oxygen species-mediated DNA oxidation in the molecular mechanism of phenytoin teratogenicity. Mol Pharmacol 48:112–120

    CAS  PubMed  Google Scholar 

  28. Parman T, Wiley MJ, Wells PG (1999) Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 5:582–585

    Article  CAS  Google Scholar 

  29. Lee CJ, Goncalves LL, Wells PG (2011) Embryopathic effects of thalidomide and its hydrolysis products in rabbit embryo culture: evidence for a prostaglandin H synthase (PHS)-dependent, reactive oxygen species (ROS)-mediated mechanism. FASEB J 25:2468–2483

    Article  CAS  Google Scholar 

  30. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  Google Scholar 

  31. Milligan JR, Aguilera JA, Ward JF (2001) Redox equilibrium between guanyl radicals and thiocyanate influences base damage yields in gamma irradiated plasmid DNA. Estimation of the reduction potential of guanyl radicals in plasmid DNA in aqueous solution at physiological ionic strength. Int J Radiat Biol 77:1195–1205

    Article  CAS  Google Scholar 

  32. Steenken S, Jovanovic SV (1997) How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc 119:617–618

    Article  CAS  Google Scholar 

  33. Neeley WL, Essigmann JM (2006) Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 19:491–505

    Article  CAS  Google Scholar 

  34. Brocardo PS, Gil-Mohapel J, Christie BR (2011) The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res Rev 67:209–225

    Article  CAS  Google Scholar 

  35. Boiteux S, Radicella JP (2000) The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys 377:1–8

    Article  CAS  Google Scholar 

  36. Bruner SD, Norman DPG, Verdine GL (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403:859–866

    Article  CAS  Google Scholar 

  37. Minowa O, Arai T, Hirano M, Monden Y, Nakai S, Fukuda M, Itoh M, Takano H, Hippou Y, Aburatani H, Masumura K, Nohmi T, Nishimura S, Noda T (2000) Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice. PNAS 97:4156–4161

    Article  CAS  Google Scholar 

  38. Arai T, Kelly VP, Komoro K, Minowa O, Noda T, Nishimura S (2003) Cell proliferation in liver of Mmh/Ogg1-deficient mice enhances mutation frequency because of the presence of 8-hydroxyguanine in DNA. Cancer Res 63:4287–4292

    CAS  PubMed  Google Scholar 

  39. Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T, Barnes DE (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. PNAS 96:13300–13305

    Article  CAS  Google Scholar 

  40. Osterod M, Hollenbach S, Hengstler JG, Barnes DE, Lindahl T, Epe B (2001) Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Carcinogenesis 22:1459–1463

    Article  CAS  Google Scholar 

  41. Ruchko MV, Gorodnya OM, Zuleta A, Pastukh VM, Gillespie MN (2011) The DNA glycosylase Ogg1 defends against oxidant-induced mtDNA damage and apoptosis in pulmonary artery endothelial cells. Free Radic Biol Med 50:1107–1113

    Article  CAS  Google Scholar 

  42. Licht CL, Stevnsner T, Bohr VA (2003) Cockayne syndrome group B cellular and biochemical functions. Am J Hum Genet 73:1217–1239

    Article  CAS  Google Scholar 

  43. Menoni H, Hoeijmakers JH, Vermeulen W (2012) Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J Cell Biol 199:1037–1046

    Article  CAS  Google Scholar 

  44. Parlanti E, D’Errico M, Degan P, Calcagnile A, Zijno A, van der Pluijm I, van der Horst GT, Biard DS, Dogliotti E (2012) The cross talk between pathways in the repair of 8-oxo-7,8-dihydroguanine in mouse and human cells. Free Radic Biol Med 53:2171–2177

    Article  CAS  Google Scholar 

  45. Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD (2016) The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a mini review. Oxidative Med Cell Longev 2016:8590578

    Article  Google Scholar 

  46. Rossignol D, Frye R (2014) Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front Physiol 5:1–15

    Article  Google Scholar 

  47. Shpyleva S, Ivanovsky S, de Conti A, Melnyk S, Tryndyak V, Beland FA, James SJ, Pogribny IP (2014) Cerebellar oxidative DNA damage and altered DNA methylation in the BTBR T+tf/J mouse model of autism and similarities with human post mortem cerebellum. PLoS One 9:e113712

    Article  Google Scholar 

  48. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Part C 27:120–139

    Article  CAS  Google Scholar 

  49. Cardozo-Pelaez F, Brooks PJ, Stedeford T, Song S, Sanchez-Ramos J (2000) DNA damage, repair, and antioxidant systems in brain regions: a correlative study. Free Radic Biol Med 28:779–785

    Article  CAS  Google Scholar 

  50. Govek E-EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19:1–49

    Article  CAS  Google Scholar 

  51. Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2:a001818. https://doi.org/10.1101/cshperspect.a001818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Luo J, Hosoki K, Bacsi A, Radak Z, Hegde ML, Sur S, Hazra TK, Brasier AR, Ba X, Boldogh I (2014) 8-Oxoguanine DNA glycosylase-1-mediated DNA repair is associated with Rho GTPase activation and α-smooth muscle actin polymerization. Free Radic Biol Med 73:430–438

    Article  CAS  Google Scholar 

  53. Boldogh I, Hajas G, Aguilera-Aguirre L, Hegde ML, Radak Z, Bacsi A, Sur S, Hazra TK, Mitra S (2012) Activation of ras signaling pathway by 8-oxoguanine DNA glycosylase bound to its excision product, 8-oxoguanine. J Biol Chem 287:20769–20773

    Article  CAS  Google Scholar 

  54. Hajas G, Bacsi A, Aguilera-Aguirre L, Hegde ML, Tapas KH, Sur S, Radak Z, Ba X, Boldogh I (2013) 8-Oxoguanine DNA glycosylase-1 links DNA repair to cellular signaling via the activation of the small GTPase Rac1. Free Radic Biol Med 61:384–394

    Article  CAS  Google Scholar 

  55. Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A, Chiariotti L, Malorni A, Abbondanza C, Avvedimento EV (2008) DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science 319:202–206

    Article  CAS  Google Scholar 

  56. Bjørge MD, Hildrestrand GA, Scheffler K, Suganthan R, Rolseth V, Kuśnierczyk A, Rowe AD, Vågbø CB, Vetlesen S, Eide L, Slupphaug G, Nakabeppu Y, Bredy TW, Klungland A, Bjørås M (2015) Synergistic actions of Ogg1 and Mutyh DNA glycosylases modulate anxiety-like behavior in mice. Cell Rep 13:2671–2678

    Article  Google Scholar 

  57. Amente S, Lania L, Avvedimento EV, Majello B (2010) DNA oxidation drives Myc mediated transcription. Cell Cycle 9:3002–3004

    Article  CAS  Google Scholar 

  58. Ba X, Bacsi A, Luo J, Aguilera-Aguirre L, Zeng X, Radak Z, Brasier AR, Boldogh I (2014) 8-oxoguanine DNA glycosylase-1 augments proinflammatory gene expression by facilitating the recruitment of site-specific transcription factors. J Immunol 192:2384–2394

    Article  CAS  Google Scholar 

  59. Osborn J (2000) A review of radioactive and non-radioactive-based techniques used in life science applications, Part I: blotting techniques. Life Sci News 6:1–4

    Google Scholar 

  60. Dundas CM, Demonte D, Park S (2013) Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 97:9343–9353

    Article  CAS  Google Scholar 

  61. Diamandis EP, Christopoulos TK (1991) The biotin-(strept)avidin system: principles and applications in biotechnology. Clin Chem 37:625–636

    CAS  PubMed  Google Scholar 

  62. Bronstein I, Edwards B, Sparks A (1998) Chemiluminescent 1, 2-dioxetanes, vol 5840919. Tropix Inc., Bedford, MA

    Google Scholar 

  63. Kricka LJ (2003) Clinical applications of chemiluminescence. Anal Chim Acta 500:279–286

    Article  CAS  Google Scholar 

  64. Markwell MA, Haas SM, Tolbert NE, Bieber LL (1981) Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol 72:296–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ research was supported by grants from the Canadian Institutes of Health Research (PJT-156023, MOP-115108, MOP-82812) and the University of Toronto Faculty of Pharmacy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Wells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhatia, S., Wells, P.G. (2019). Quantifying Activity for Repair of the DNA Lesion 8-Oxoguanine by Oxoguanine Glycosylase 1 (OGG1) in Mouse Adult and Fetal Brain Nuclear Extracts Using Biotin-Labeled DNA. In: Hansen, J., Winn, L. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 1965. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9182-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9182-2_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9181-5

  • Online ISBN: 978-1-4939-9182-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics