Skip to main content

Advertisement

Log in

Deficient DNA repair exacerbates ethanol-initiated DNA oxidation and embryopathies in ogg1 knockout mice: gender risk and protection by a free radical spin trapping agent

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) have been implicated in the teratogenicity of alcohol (ethanol, EtOH). To determine the involvement of embryonic oxidative DNA damage, DNA repair-deficient oxoguanine glycosylase 1 (ogg1) knockout embryos were exposed in culture to EtOH (2 or 4 mg/ml), with or without pretreatment with the free radical spin trap phenylbutylnitrone (PBN) (0.125 mM). Visceral yolk sacs were used to genotype embryos for DNA repair status and gender. EtOH caused a concentration-dependent decrease in anterior neuropore closure (ANPC), somite development, turning, crown–rump length (CRL), yolk sac diameter (YSD) and head length (HL) (p < 0.001) in all 3 ogg1 genotypes. There was a further ogg1 gene dose-dependent decrease from +/+ to −/− embryos in ANPC, somite development, turning, CRL and HL (p < 0.05), and a gene-dependent correlation between HL and ANPC (p < 0.01). Female embryos exhibited lesser ANPC and turning than males (p < 0.05), suggesting underlying gender-dependent target-specific determinants. PBN pretreatment increased ANPC, somite development, turning, CRL, YSD and HL (p < 0.001), although this protection against EtOH was slightly less effective in −/− embryos. Oxidatively damaged DNA determined as 8-oxo-2′-deoxyguanosine (8-oxodGuo), which is repaired by OGG1, was measured in single embryos in vivo after maternal EtOH treatment (4 g/kg i.p). EtOH increased embryonic 8-oxodGuo in an ogg1 gene-dependent fashion, with the highest levels in −/− embryos. These results show that embryonic DNA repair status and gender are determinants of risk. ROS-initiated embryonic DNA oxidation is involved in EtOH embryopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

8-oxodGuo:

8-Oxo-2′-deoxyguanosine

FASD:

Fetal alcohol spectrum disorders

OGG1:

Oxoguanine glycosylase 1

PBN:

Alpha-phenyl-N-tert-butylnitrone

GD:

Gestational day

EtOH:

Ethanol

ROS:

Reactive oxygen species

References

  • Abramov JP, Wells PG (2011) Embryonic catalase protects against endogenous and phenytoin-enhanced DNA oxidation and embryopathies in acatalasemic and human catalase-expressing mice. Faseb J 25(7):2188–2200. doi:10.1096/fj.11-182444

    Article  CAS  PubMed  Google Scholar 

  • Bhuller Y, Wells PG (2006) A developmental role for ataxia-telangiectasia mutated in protecting the embryo from spontaneous and phenytoin-enhanced embryopathies in culture. Toxicol Sci 93(1):156–163. doi:10.1093/toxsci/kfl045

    Article  CAS  PubMed  Google Scholar 

  • Blakley PM, Scott WJ Jr (1984) Determination of the proximate teratogen of the mouse fetal alcohol syndrome. 2. Pharmacokinetics of the placental transfer of ethanol and acetaldehyde. Toxicol Appl Pharmacol 72(2):364–371. doi:10.1016/0041-008X(84)90321-1

    Article  CAS  PubMed  Google Scholar 

  • Boiteux S, Radicella JP (2000) The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys 377(1):1–8. doi:10.1006/abbi.2000.1773

    Article  CAS  PubMed  Google Scholar 

  • Brocardo PS, Gil-Mohapel J, Christie BR (2011) The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res Rev 67(1–2):209–225. doi:10.1016/j.brainresrev.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  • Copp AJ, Brook FA, Estibeiro JP, Shum AS, Cockroft DL (1990) The embryonic development of mammalian neural tube defects. Prog Neurobiol 35(5):363–403

    Article  CAS  PubMed  Google Scholar 

  • Danielsson C, Azarbayjani F, Skold AC, Sjogren N, Danielsson BR (2007) Polytherapy with hERG-blocking antiepileptic drugs: increased risk for embryonic cardiac arrhythmia and teratogenicity. Birth Defects Res A 79(8):595–603. doi:10.1002/bdra.20378

    Article  CAS  Google Scholar 

  • Dennery PA (2007) Effects of oxidative stress on embryonic development. Birth Defects Res C Embryo Today 81(3):155–162. doi:10.1002/bdrc.20098

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Sulik KK, Chen SY (2010) The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol Lett 193(1):94–100. doi:10.1016/j.toxlet.2009.12.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Hansen JM, Harris C (2013) Redox control of teratogenesis. Reprod Toxicol 35:165–179. doi:10.1016/j.reprotox.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  • Janzen EG, Stronks HJ, Dubose CM, Poyer JL, McCay PB (1985) Chemistry and biology of spin-trapping radicals associated with halocarbon metabolism in vitro and in vivo. Environ Health Perspect 64:151–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeng W, Ramkissoon A, Wells PG (2011) Reduced DNA oxidation in aged prostaglandin H synthase-1 knockout mice. Free Radic Biol Med 50(4):550–556. doi:10.1016/j.freeradbiomed.2010.11.016

    Article  CAS  PubMed  Google Scholar 

  • Jones KL (2011) The effects of alcohol on fetal development. Birth Defects Res C Embryo Today 93(1):3–11. doi:10.1002/bdrc.20200

    Article  CAS  PubMed  Google Scholar 

  • Klungland A, Rosewell I, Hollenbach S et al (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci USA 96(23):13300–13305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189. doi:10.1038/nri1312

    Article  CAS  PubMed  Google Scholar 

  • Laposa RR, Henderson JT, Xu E, Wells PG (2004) Atm-null mice exhibit enhanced radiation-induced birth defects and a hybrid form of embryonic programmed cell death indicating a teratological suppressor function for ATM. Faseb J 18(7):896–898. doi:10.1096/fj.03-0903fje

    CAS  PubMed  Google Scholar 

  • Lee RD, An SM, Kim SS et al (2005) Neurotoxic effects of alcohol and acetaldehyde during embryonic development. J Toxicol Environ Health A 68(23–24):2147–2162. doi:10.1080/15287390500177255

    Article  PubMed  Google Scholar 

  • Lee CJ, Goncalves LL, Wells PG (2011) Embryopathic effects of thalidomide and its hydrolysis products in rabbit embryo culture: evidence for a prostaglandin H synthase (PHS)-dependent, reactive oxygen species (ROS)-mediated mechanism. Faseb J 25(7):2468–2483. doi:10.1096/fj.10-178814

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wells PG (1994) In vivo phenytoin-initiated oxidative damage to proteins and lipids in murine maternal hepatic and embryonic tissue organelles: potential molecular targets of chemical teratogenesis. Toxicol Appl Pharmacol 125(2):247–255. doi:10.1006/taap.1994.1070

    Article  CAS  PubMed  Google Scholar 

  • McCallum GP, Wong AW, Wells PG (2011) Cockayne syndrome B protects against methamphetamine-enhanced oxidative DNA damage in murine fetal brain and postnatal neurodevelopmental deficits. Antioxid Redox Signal 14(5):747–756. doi:10.1089/ars.2009.2946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller L, Shapiro AM, Cheng J, Wells PG (2013a) The free radical spin trapping agent phenylbutylnitrone reduces fetal brain DNA oxidation and postnatal cognitive deficits caused by in utero exposure to a non-structurally teratogenic dose of ethanol: a role for oxidative stress. Free Radic Biol Med 60:223–232. doi:10.1016/j.freeradbiomed.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  • Miller L, Shapiro AM, Wells PG (2013b) Embryonic catalase protects against ethanol-initiated DNA oxidation and teratogenesis in acatalasemic and transgenic human catalase-expressing mice. Toxicol Sci 134(2):400–411. doi:10.1093/toxsci/kft122

    Article  CAS  PubMed  Google Scholar 

  • Moore K, Persaud TVN (2007) The developing human: clinically oriented embryology, 8th edn. W.B. Saunders, Philadelphia

    Google Scholar 

  • Nicol CJ, Harrison ML, Laposa RR, Gimelshtein IL, Wells PG (1995) A teratologic suppressor role for p53 in benzo[a]pyrene-treated transgenic p53-deficient mice. Nat Genet 10(2):181–187. doi:10.1038/ng0695-181

    Article  CAS  PubMed  Google Scholar 

  • Nicol CJ, Zielenski J, Tsui LC, Wells PG (2000) An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. Faseb J 14(1):111–127

    CAS  PubMed  Google Scholar 

  • Parman T, Chen G, Wells PG (1998) Free radical intermediates of phenytoin and related teratogens. Prostaglandin H synthase-catalyzed bioactivation, electron paramagnetic resonance spectrometry, and photochemical product analysis. J Biol Chem 273(39):25079–25088

    Article  CAS  PubMed  Google Scholar 

  • Parman T, Wiley MJ, Wells PG (1999) Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med 5(5):582–585. doi:10.1038/8466

    Article  CAS  PubMed  Google Scholar 

  • Ravanat JL, Douki T, Duez P et al (2002) Cellular background level of 8-oxo-7,8-dihydro-2′-deoxyguanosine: an isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis 23(11):1911–1918

    Article  CAS  PubMed  Google Scholar 

  • Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10(2):175–180. doi:10.1038/ng0695-175

    Article  CAS  PubMed  Google Scholar 

  • Shepard TH, Muffley LA, Smith LT (2000) Mitochondrial ultrastructure in embryos after implantation. Hum Reprod 15(Suppl 2):218–228

    Article  PubMed  Google Scholar 

  • Wells PG, Zubovits JT, Wong ST, Molinari LM, Ali S (1989) Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid, caffeic acid, and alpha-phenyl-N-t-butylnitrone: implications for bioactivation by prostaglandin synthetase. Toxicol Appl Pharmacol 97(2):192–202. doi:10.1016/0041-008X(89)90325-6

    Article  CAS  PubMed  Google Scholar 

  • Wells PG, McCallum GP, Chen CS et al (2009) Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108(1):4–18. doi:10.1093/toxsci/kfn263

    Article  CAS  PubMed  Google Scholar 

  • Wells PG, McCallum GP, Lam KC, Henderson JT, Ondovcik SL (2010) Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits. Birth Defects Res C Embryo Today 90(2):103–109. doi:10.1002/bdrc.20177

    Article  CAS  PubMed  Google Scholar 

  • Winn LM, Wells PG (1995) Phenytoin-initiated DNA oxidation in murine embryo culture, and embryo protection by the antioxidative enzymes superoxide dismutase and catalase: evidence for reactive oxygen species-mediated DNA oxidation in the molecular mechanism of phenytoin teratogenicity. Mol Pharmacol 48(1):112–120

    CAS  PubMed  Google Scholar 

  • Winn LM, Wells PG (1997) Evidence for embryonic prostaglandin H synthase-catalyzed bioactivation and reactive oxygen species-mediated oxidation of cellular macromolecules in phenytoin and benzo[a]pyrene teratogenesis. Free Radic Biol Med 22(4):607–621

    Article  CAS  PubMed  Google Scholar 

  • Wong AW, McCallum GP, Jeng W, Wells PG (2008) Oxoguanine glycosylase 1 protects against methamphetamine-enhanced fetal brain oxidative DNA damage and neurodevelopmental deficits. J Neurosci 28(36):9047–9054. doi:10.1523/JNEUROSCI.2557-08.2008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from the Canadian Institutes of Health Research (CIHR).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Wells.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 3128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller-Pinsler, L., Wells, P.G. Deficient DNA repair exacerbates ethanol-initiated DNA oxidation and embryopathies in ogg1 knockout mice: gender risk and protection by a free radical spin trapping agent. Arch Toxicol 90, 415–425 (2016). https://doi.org/10.1007/s00204-014-1397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1397-1

Keywords

Navigation