Skip to main content

Efficient Gene Editing of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9

  • Protocol
  • First Online:
CRISPR Gene Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1961))

Abstract

The generation of targeted mutants is a crucial step toward studying the biomedical effect of genes of interest. The generation of such mutants in human induced pluripotent stem cells (iPSCs) is of an utmost importance as these cells carry the potential to be differentiated into any cell lineage. Using the CRISPR/Cas9 nuclease system for induction of targeted double-strand breaks, gene editing of target loci in iPSCs can be achieved with high efficiency. This chapter covers protocols for the preparation of reagents to target loci of interest, the transfection, and for the genotyping of single cell-derived iPSC clones. Furthermore, we provide a protocol for the convenient generation of plasmids enabling multiplex gene targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shui B, Hernandez Matias L, Guo Y, Peng Y (2016) The rise of CRISPR/Cas for genome editing in stem cells. Stem Cells Int 2016:8140168. https://doi.org/10.1155/2016/8140168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816. LP-821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barrangou R (2014) Cas9 targeting and the CRISPR revolution. Science 344:707. LP-708

    Article  CAS  PubMed  Google Scholar 

  4. Hess GT, Tycko J, Yao D, Bassik MC (2017) Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell 68:26–43. https://doi.org/10.1016/j.molcel.2017.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma D, Liu F (2015) Genome editing and its applications in model organisms. Genom Proteom Bioinformat 13:336–344. https://doi.org/10.1016/j.gpb.2015.12.001

    Article  Google Scholar 

  7. Chu VT, Weber T, Wefers B et al (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548. https://doi.org/10.1038/nbt.3198

    Article  CAS  PubMed  Google Scholar 

  8. Kim EJ, Kang KH, Ju JH (2017) CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med 32:42–61. https://doi.org/10.3904/kjim.2016.198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang D, Scavuzzo MA, Chmielowiec J et al (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci Rep 6:1–15. https://doi.org/10.1038/srep21264

    Article  CAS  Google Scholar 

  10. Li H, Beckman KA, Pessino V, et al (2017) Design and specificity of long ssDNA donors for CRISPR-based knock-in. https://doi.org/10.1101/178905

  11. Yumlu S, Stumm J, Bashir S et al (2017) Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9. Methods 121–122:29–44. https://doi.org/10.1016/j.ymeth.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  12. Mohr SE, Hu Y, Ewen-Campen B et al (2016) CRISPR guide RNA design for research applications. FEBS J 283:3232–3238. https://doi.org/10.1111/febs.13777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Merkle FT, Neuhausser WM, Santos D et al (2015) Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep 11:875–883. https://doi.org/10.1016/j.celrep.2015.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cui Y, Xu J, Cheng M et al (2018) Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci 10(2):455–465. https://doi.org/10.1007/s12539-018-0298-z

    Article  CAS  PubMed  Google Scholar 

  15. Peters D, Cowan C, Musunuru K (2014) Genome editing in human pluripotent stem cells. In: StemBook. Harvard Stem Cell Institute, Cambridge, MA. https://doi.org/10.3824/stembook.1.94.1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Kühn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yumlu, S., Bashir, S., Stumm, J., Kühn, R. (2019). Efficient Gene Editing of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9. In: Luo, Y. (eds) CRISPR Gene Editing. Methods in Molecular Biology, vol 1961. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9170-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9170-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9169-3

  • Online ISBN: 978-1-4939-9170-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics