Skip to main content

High-Throughput Targeted Repeat Element Bisulfite Sequencing (HT-TREBS)

  • Protocol
  • First Online:
Tumor Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1908))

Abstract

High-throughput targeted repeat element bisulfite sequencing (HT-TREBS) is designed to assay the methylation level of individual retrotransposon loci of a targeted family, in a locus-specific manner, and on a genome-wide scale. Briefly, genomic DNA is sheared and ligated to Ion Torrent A adaptors (with methylated cytosines), followed by bisulfite-conversion, and amplification with primers designed to bind the targeted retrotransposon. Since the primers carry the Ion Torrent P1 adaptor as a 5′-extension, the amplified library is ready to be size-selected and sequenced on a next-generation sequencing platform. Once sequenced, each retrotransposon is mapped to a particular genomic locus, which is achieved through ensuring at least a 10-bp overlap with flanking unique sequence, followed by the calculation of methylation levels of the mapped retrotransposon using a BiQ Analyzer HT. A complete protocol for library construction as well as the bioinformatics for HT-TREBS is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Koning AP, Gu W, Castoe TA et al (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7(12):e1002384

    Article  Google Scholar 

  2. Burns KH (2017) Transposable elements in cancer. Nat Rev Cancer 17(7):415–424

    Article  CAS  Google Scholar 

  3. Anwar SL, Wulaningsih W, Lehmann U (2017) Transposable elements in human cancer: causes and consequences of deregulation. Int J Mol Sci 18(5):974

    Article  Google Scholar 

  4. Lee E, Iskow R, Yang L et al (2012) Landscape of somatic retrotransposition in human cancers. Science 337(6097):967–971

    Article  CAS  Google Scholar 

  5. Penha RCC, Lima SCS, Boroni M et al (2017) Intrinsic LINE-1 hypomethylation and decreased brca1 expression are associated with DNA repair delay in irradiated thyroid cells. Radiat Res 188(2):144–155

    Article  CAS  Google Scholar 

  6. Daskalos A, Nikolaidis G, Xinarianos G et al (2009) Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124(1):81–87

    Article  CAS  Google Scholar 

  7. Hur K, Cejas P, Feliu J et al (2014) Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63(4):635–646

    Article  CAS  Google Scholar 

  8. Wolff EM, Byun HM, Han HF et al (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6(4):e1000917

    Article  Google Scholar 

  9. Lock FE, Rebollo R, Miceli-Royer K et al (2014) Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proc Natl Sci Acad USA 111(34):E3534–E3543

    Article  CAS  Google Scholar 

  10. Park SY, Seo AN, Jung HY et al (2014) Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS One 9(6):e100429

    Article  Google Scholar 

  11. Bae JM, Shin SH, Kwon HJ et al (2012) ALU and LINE-1 hypomethylations in multistep gastric carcinogenesis and their prognostic implications. Int J Cancer 131(6):1323–1331

    Article  CAS  Google Scholar 

  12. Bollati V, Fabris S, Pegoraro V et al (2009) Differential repetitive DNA methylation in multiple myeloma molecular subgroups. Carcinogenesis 30(8):1330–1335

    Article  CAS  Google Scholar 

  13. Akers SN, Moysich K, Zhang W et al (2014) LINE1 and Alu repetitive element DNA methylation in tumors and white blood cells from epithelial ovarian cancer patients. Gynecol Oncol 132(2):462–467

    Article  CAS  Google Scholar 

  14. Rhee YY, Lee TH, Song YS et al (2015) Prognostic significance of promoter CpG island hypermethylation and repetitive DNA hypomethylation in stage I lung adenocarcinoma. Virchows Arch 466(6):675–683

    Article  CAS  Google Scholar 

  15. Wedge E, Hansen JW (2017) Global hypomethylation is an independent prognostic factor in diffuse large B cell lymphoma. Am J Hematol 92(7):689–694

    Article  CAS  Google Scholar 

  16. Swets M, Zaalberg A, Boot A et al (2016) Tumor LINE-1 Methylation Level in Association with Survival of Patients with Stage II Colon Cancer. Int J Mol Sci 18(1):36

    Article  Google Scholar 

  17. Ekram MB, Kim J (2014) High-throughput targeted repeat element bisulfite sequencing (HT-TREBS): genome-wide DNA methylation analysis of IAP LTR retrotransposon. PLoS One 9(7):e101683

    Article  Google Scholar 

  18. Bakshi A, Ekram MB, Kim J (2015) Locus-specific DNA methylation analysis of retrotransposons in ES, somatic and cancer cells using High-Throughput Targeted Repeat Element Bisulfite Sequencing. Genom Data 3:87–89

    Article  Google Scholar 

  19. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22(15):2990–2997

    Article  CAS  Google Scholar 

  20. Bakshi A, Herke SW, Batzer MA, Kim J (2016) DNA methylation variation of human-specific Alu repeats. Epigenetics 11(2):163–173

    Article  Google Scholar 

  21. Pereira FL, Soares SC, Dorella FA et al (2016) Evaluating the efficacy of the new Ion PGM Hi-Q Sequencing Kit applied to bacterial genomes. Genomics 107(5):189–198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joomyeong Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bakshi, A., Ekram, M.B., Kim, J. (2019). High-Throughput Targeted Repeat Element Bisulfite Sequencing (HT-TREBS). In: Murray, S. (eds) Tumor Profiling. Methods in Molecular Biology, vol 1908. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9004-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9004-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9002-3

  • Online ISBN: 978-1-4939-9004-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics