Skip to main content

EIS-Based Biosensors in Foodborne Pathogen Detection with a Special Focus on Listeria monocytogenes

  • Protocol
  • First Online:
Foodborne Bacterial Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1918))

Abstract

In this chapter methods and protocols for surfaces adapted to electrochemical impedance detection, antibody binding, electrolyte couples used, and instrumentation for EIS Biosensing are presented. Various technical bottlenecks have been overcome in recent years. Other limitations still present in this technique are discussed. We present the most recent applications in food pathogen detection based on EIS methods, as well as using other antibody-based platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA sensors and enzyme biosensors. Electroanalysis 15:913–947

    CAS  Google Scholar 

  2. Brett CMA, Oliveira Brett AM, Serrano SHP (1999) EIS study of DNA-modified electrodes. Electrochim Acta 44:4233–4239

    CAS  Google Scholar 

  3. Davis F, Nabok AV, Seamus PJ (2005) Species differentiation by DNA-modified carbon electrodes using AC impedimetric approach. Biosens Bioelectron 20:1531–1538

    CAS  PubMed  Google Scholar 

  4. Cai W, Peck JR, van der Weide DW et al (2004) Direct electrical detection of hybridization at DNA-modified silicon surface. Biosens Bioelectron 19:1013–1019

    CAS  PubMed  Google Scholar 

  5. Yang WS, Butler JE, Russell JN et al (2007) Direct electrical detection of antibody-antigen binding on diamond and silicon substrates using electrical impedance spectroscopy. Analyst 132:296–306

    CAS  PubMed  Google Scholar 

  6. De Silva MS, Zhang Y, Hesketh PJ et al (1995) Impedance based sensing of the specific binding reaction between Staphylococcus enterotoxin B and its antibody on an ultrathin Pt film. Biosens Bioelectron 10:675–682

    Google Scholar 

  7. Pak SC, Penrose W, Hesketh PJ (2001) An ultrathin platinum film sensor to measure biomolecular binding. Biosens Bioelectron 16:371–379

    CAS  PubMed  Google Scholar 

  8. Mantzila AG, Prodromidis MI (2005) Performance of impedimetric biosensors based on anodically formed Ti/TiO2 electrodes. Electroanalysis 17(20):1878–1885

    CAS  Google Scholar 

  9. Mantzila AG, Prodromidis MI (2006) Development and study of anodic Ti/TiO2 electrodes and their potential use as impedimetric immunosensors. Electrochim Acta 51:3537–3542

    CAS  Google Scholar 

  10. Ruan CM, Yang L, Li YB (2002) Immunobiosensor chips for detection of Escherichia coli O157:H57 using electrochemical impedance spectroscopy. Anal Chem 74:4814–4820

    CAS  PubMed  Google Scholar 

  11. Corry B, Janelle U, Crawley C (2003) Probing direct binding affinity in electrochemical antibody-based sensors. Anal Chim Acta 496:103–116

    CAS  Google Scholar 

  12. Blankespoor R, Limoges B, Shollhorn B et al (2005) Dense monolayers of metal-chelating ligands covalently attached to carbon electrodes electrochemically and their useful application in affinity binding of histidine-tagged proteins. Langmuir 21:3362–3375

    CAS  PubMed  Google Scholar 

  13. Teh HF, Gong H, Dong XD et al (2005) Electrochemical biosensing of DNA with capture probe covalently immobilized onto glassy carbon surface. Anal Chim Acta 551:23–29

    CAS  Google Scholar 

  14. Ramesh P, Sampath S (2003) Electrochemical characterization of binderless, recompressed exfoliated graphite electrodes: electron transfer kinetics and diffusion characteristics. Anal Chem 75:6949–6957

    CAS  PubMed  Google Scholar 

  15. Huang Y, Suni II (2008) Degenerate Si as an electrode material for electrochemical biosensors. J Electrochem Soc 155:J350

    CAS  Google Scholar 

  16. Radhakrishnan R, Suni II (2016) Antibody regeneration on degenerate Si electrodes for calibration and reuse of impedance biosensors. Sens Biosensing Res 7:20–24

    Google Scholar 

  17. Schoning MJ, Tzarouchas D, Beckers L et al (1996) A highly long term stable silicon pH sensor fabricated by pulsed laser deposition technique. Sensors Actuators B Chem 35:228–233

    Google Scholar 

  18. HuayhuasChipana BC, Gomero JCM, Sotomayor MDPT (2014) Nanostructured screen-printed electrodes modified with self-assembled monolayers for determination of metronidazole in different matrices. J Braz Chem Soc 25:1737–1745

    CAS  Google Scholar 

  19. Kumar CSSR (2006) Nanomaterials for biosensors. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  20. Lai RY, Seferos DS, Heeger AJ et al (2006) Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6- or 11-carbon self-assembled monolayers. Langmuir 22:10796–10800

    CAS  PubMed  Google Scholar 

  21. Patel N, Davies MC, Hartshorne M et al (1997) Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers. Langmuir 13:6485–6490

    CAS  Google Scholar 

  22. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    CAS  PubMed  Google Scholar 

  23. Rickert J, Gopel W, Beck W et al (1996) A mixed self-assembled monolayer for an impedimetric immunosensors. Biosens Bioelectron 11:757–768

    CAS  PubMed  Google Scholar 

  24. Steel AB, Levicky RL, Herne TM et al (2000) Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys J 79:975–981

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Patolsky F, Katz E, Bardea A et al (1999) Enzyme linked amplified electrochemical sensing of oligonucleotide DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir 15:3703–3706

    CAS  Google Scholar 

  26. Bain CD, Troughton EB, Tao YT et al (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321

    CAS  Google Scholar 

  27. Manickam A. 2012 Integrated Impedance Spectroscopy Biosensors. Ph.D. Thesis University of Texas, Austin

    Google Scholar 

  28. Poirier GE, Tarlov MJ, Rushmeier HE (1994) Two-dimensional liquid phase and the p √3 phase of alkanethiol self-assembled monolayers on Au(111). Langmuir 10:3383

    CAS  Google Scholar 

  29. Primiceri E, Chiriacò MS, De Feo F et al (2016) A multipurpose biochip for food pathogen detection. Anal Methods 8:3055–3060

    CAS  Google Scholar 

  30. Maupas H, Soldatkin AP, Martelet C et al (1997) Direct immunosensing using differential electrochemical measurements of impedimetric variations. J Electroanal Chem 421:165–171

    CAS  Google Scholar 

  31. Radhakrishnan R, Pali M, Lee HJ et al (2016) Impedance biosensor incorporating a carboxylate-terminated Bidentate Thiol for antibody immobilization. J Electrochem Soc 163:125–130

    Google Scholar 

  32. Dijksma M, Boukamp BA, Kamp B et al (2002) Effect of hexacyanoferrate(ii/iii) on self-assembled monolayers of thioctic acid and 11-mercaptoundecanoic acid on gold. Langmuir 18:3105

    CAS  Google Scholar 

  33. Homola J (2008) Surface Plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    CAS  PubMed  Google Scholar 

  34. Huang J, Hemminger JC (1993) Photooxidation of thiols in self-assembled monolayers on gold. J Am Chem Soc 115:3342–3343

    CAS  Google Scholar 

  35. Zamborini FP, Crooks RM (1997) In-situ electrochemical scanning Tunneling microscopy (ECSTM) study of cyanide-induced corrosion of naked and hexadecylmercaptan-passivated Au(111). Langmuir 13:122–126

    CAS  Google Scholar 

  36. Srimsombat L, Zhang S, Lee TR (2010) Thermal stability of mono-, Bis-, and Tris-chelating alkanethiol films assembled on gold nanoparticles and evaporated flat gold. Langmuir 26:41–46

    Google Scholar 

  37. Chinwangso P, Jamison AC, Lee TR (2011) Multidentate adsorbates for self-assembled monolayer films. Acc Chem Res 44:511–519

    CAS  PubMed  Google Scholar 

  38. Lee HJ, Jamison AC, Yuan Y et al (2013) Robust carboxylic acid terminated organic thin films and nanoparticle protectants generated from bidentate alkanethiols. Langmuir 29:10432–10439

    CAS  PubMed  Google Scholar 

  39. Huang Y, Bell MC, Suni II (2008) Impedance biosensor for peanut protein Ara h 1. Anal Chem 80:9157–9161

    CAS  PubMed  Google Scholar 

  40. Radhakrishnan R, Poltronieri P (2017) Fluorescence-free biosensor methods in detection of food pathogens with a special focus on Listeria monocytogenes. Biosensors (Basel) 7:63

    Google Scholar 

  41. Cimaglia F, De Lorenzis E, Mezzolla V et al (2016) Detection of L. monocytogenes in enrichment cultures by immunoseparation and immunosensors. IEEE Sensors 16:7045–7052

    CAS  Google Scholar 

  42. Morgan H, Green NG (eds) (2003) AC electrokinetics: colloids and nanoparticles. Baldock. Research Studies Press, Philadelphia

    Google Scholar 

  43. Wang D, Sigurdson M, Meinhart CD (2005) Experimental analysis of particle and fluid motion in AC electrokinetics. Exp Fluids 38:1–10

    Google Scholar 

  44. Ahualli S, Jimenez ML, Carrique F et al (2009) AC electrokinetics of concentrated suspensions of soft particles. Langmuir 25:1986–1997

    CAS  PubMed  Google Scholar 

  45. Wu J (2006) Biased AC electro-osmosis for on-chip bioparticle processing. IEEE Trans Nanotechnol 5:84–89

    Google Scholar 

  46. Wu J (2008) Interactions of electrical fields with fluids: laboratory-on-a-chip applications. IET Nanobiotechnol 2:14–27

    CAS  PubMed  Google Scholar 

  47. Castellanos A, Ramos A, Gonzale A et al (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J Phys D Appl Phys 36:2584

    CAS  Google Scholar 

  48. Liu X, Yang K, Wadhwa A et al (2011) Development of an AC electrokinetics-based immunoassay system for on-site serodiagnosis of infectious diseases. Sens Actuators, A 171:406–413

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palmiro Poltronieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Poltronieri, P., Primiceri, E., Radhakrishnan, R. (2019). EIS-Based Biosensors in Foodborne Pathogen Detection with a Special Focus on Listeria monocytogenes. In: Bridier, A. (eds) Foodborne Bacterial Pathogens. Methods in Molecular Biology, vol 1918. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9000-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9000-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8999-7

  • Online ISBN: 978-1-4939-9000-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics