Skip to main content

In Vitro Cell Models of the Human Blood-Brain Barrier: Demonstrating the Beneficial Influence of Shear Stress on Brain Microvascular Endothelial Cell Phenotype

  • Protocol
  • First Online:
Blood-Brain Barrier

Part of the book series: Neuromethods ((NM,volume 142))

Abstract

The field of translational cerebrovascular research routinely employs blood-brain barrier (BBB) cell models. Using in vitro culture models to accurately mimic the physiological complexity of the in vivo BBB continues to be a challenge, however. To meet this challenge, in vitro BBB models have evolved significantly over the last three decades, from static monocultures to dynamic multicellular flow-based systems. In this chapter, we initially focus on three key aspects that have helped to drive the evolution of in vitro BBB models, namely (1) the availability of suitable BBB cell lines; (2) a fuller understanding of the neurovascular unit (NVU); and (3) an appreciation of the relevance of blood flow shear stress to BBB physiology. We then put this knowledge into a more practical context by experimentally demonstrating two alternate means of applying physiological shear stress to primary-derived human brain microvascular endothelial cells (HBMvECs), and showing how BBB phenotype is improved in response to flow by using immunocytochemical localization of tight-junction zonula occludens-1 (ZO-1) as a reporter index. The ability of applied shear to attenuate the pro-oxidant effects of inflammatory TNF-α in HBMvECs will also be demonstrated using flow cytometry, further highlighting the relevance of introducing shear into BBB models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bake S, Friedman JA, Sohrabji F (2009) Reproductive age-related changes in the blood brain barrier: expression of IgG and tight junction proteins. Microvasc Res 78:413–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Farrall AJ, Wardlaw JM (2009) Blood-brain barrier: ageing and microvascular disease-systematic review and meta-analysis. Neurobiol Aging 30:337–352

    Article  CAS  PubMed  Google Scholar 

  3. De Reuck JL (2012) Histopathological stainings and definitions of vascular disruptions in the elderly brain. Exp Gerontol 47:834–837

    Article  PubMed  Google Scholar 

  4. Montagne A, Barnes SR, Sweeney MD et al (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85:296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715

    Article  CAS  PubMed  Google Scholar 

  6. Alavijeh MS, Chishty M, Qaiser M et al (2005) Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx 2:554–571

    Article  PubMed  PubMed Central  Google Scholar 

  7. Olesen J, Gustavsson A, Svensson M et al (2012) The economic cost of brain disorders in Europe. Eur J Neurol 19:155–162

    Article  CAS  PubMed  Google Scholar 

  8. Wimo A, Jonsson L, Bond J et al (2013) The worldwide economic impact of dementia 2010. Alzheimers Dement 9:1–11

    Article  PubMed  Google Scholar 

  9. Ehrlich P (1885) Das Sauerstoff-Bedurfnis des Organismus: eine farbenanalytische Studie. Hirschward, Berlin

    Google Scholar 

  10. Lewandowsky M (1900) Zur lehre der cerebrospinal flussigkeit. Z Klin Med 40:480–494

    Google Scholar 

  11. Goldman EE (1913) Vitalfärbung am zentralnervensystem. Abh Preuss Akad Wiss Phys Math Kl 1:1–60

    Google Scholar 

  12. Abbott NJ, Patabendige AA, Dolman DE et al (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  13. Greenwood J, Heasman SJ, Alvarez JI et al (2011) Leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37:24–39

    Article  CAS  PubMed  Google Scholar 

  14. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rochfort KD, Cummins PM (2015) The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans 43:702–706

    Article  CAS  PubMed  Google Scholar 

  16. Shlosberg D, Benifla M, Kaufer D et al (2010) Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6:393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nag S, Kapadia A, Stewart DJ (2011) Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol 37:3–23

    Article  CAS  PubMed  Google Scholar 

  18. Cucullo L, Hossain M, Puvenna V et al (2011) The role of shear stress in blood-brain barrier endothelial physiology. BMC Neurosci 12:1–15

    Article  CAS  Google Scholar 

  19. Oldendorf WH (1971) Blood brain barrier permeability to lactate. Eur Neurol 6:49–55

    Article  CAS  PubMed  Google Scholar 

  20. Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Phys 221:1629–1639

    CAS  Google Scholar 

  21. Oldendorf WH, Hyman S, Braun L et al (1972) Blood-brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science 178:984–986

    Article  CAS  PubMed  Google Scholar 

  22. Schinkel AH (1999) P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36:179–194

    Article  CAS  PubMed  Google Scholar 

  23. O’Kane RL, Hawkins RA (2003) Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. Am J Physiol Endocrinol Metab 285:E1167–E1173

    Article  PubMed  Google Scholar 

  24. Roberts LM, Black DS, Raman C et al (2008) Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience 155:423–438

    Article  CAS  PubMed  Google Scholar 

  25. Dutheil F, Jacob A, Dauchy S et al (2010) ABC transporters and cytochromes P450 in the human central nervous system: influence on brain pharmacokinetics and contribution to neurodegenerative disorders. Expert Opin Drug Metab Toxicol 6:1161–1174

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh C, Puvenna V, Gonzalez-Martinez J et al (2011) Blood-brain barrier P450 enzymes and multidrug transporters in drug resistance: a synergistic role in neurological diseases. Curr Drug Metab 12:742–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karande P, Trasatti JP, Chandra D (2015) Chapter 4—Novel approaches for the delivery of biologics to the central nervous system. In: Singh M, Salnikova M (eds) Novel approaches and strategies for biologics, vaccines and cancer therapies. Academic Press, San Diego, CA, pp 59–88

    Chapter  Google Scholar 

  28. Berezowski V, Landry C, Lundquist S et al (2004) Transport screening of drug cocktails through an in vitro blood-brain barrier: is it a good strategy for increasing the throughput of the discovery pipeline? Pharm Res 21:756–760

    Article  CAS  PubMed  Google Scholar 

  29. Abbott NJ (2004) Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today Technol 1:407–416

    Article  CAS  PubMed  Google Scholar 

  30. Talevi A, Bellera CL, Di Ianni M et al (2012) CNS drug development—lost in translation? Mini Rev Med Chem 12:959–970

    Article  CAS  PubMed  Google Scholar 

  31. Arrowsmith J, Miller P (2013) Trial watch: phase II and phase III attrition rates 2011–2012. Nat Rev Drug Discov 12:569

    Article  CAS  PubMed  Google Scholar 

  32. Keaney J, Campbell M (2015) The dynamic blood-brain barrier. FEBS J 282:4067–4079

    Article  CAS  PubMed  Google Scholar 

  33. Furuse M, Fujita K, Hiiragi T et al (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morita K, Sasaki H, Furuse M et al (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohtsuki S, Yamaguchi H, Katsukura Y et al (2008) mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting. J Neurochem 104:147–154

    CAS  PubMed  Google Scholar 

  36. Furuse M, Hirase T, Itoh M et al (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  CAS  PubMed  Google Scholar 

  37. Balda MS, Flores-Maldonado C, Cereijido M et al (2000) Multiple domains of occludin are involved in the regulation of paracellular permeability. J Cell Biochem 78:85–96

    Article  CAS  PubMed  Google Scholar 

  38. Martin-Padura I, Lostaglio S, Schneemann M et al (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Breier G, Breviario F, Caveda L et al (1996) Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood 87:630–641

    CAS  PubMed  Google Scholar 

  40. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24:719–725

    Article  CAS  PubMed  Google Scholar 

  41. Vorbrodt AW, Dobrogowska DH (2003) Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Brain Res Rev 42:221–242

    Article  CAS  PubMed  Google Scholar 

  42. Rochfort KD, Cummins PM (2015) Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium. Microvasc Res 100:48–53

    Article  CAS  PubMed  Google Scholar 

  43. Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pardridge WM (2003) Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3:90–105

    Article  CAS  PubMed  Google Scholar 

  45. Poduslo JF, Curran GL, Wengenack TM et al (2001) Permeability of proteins at the blood-brain barrier in the normal adult mouse and double transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 8:555–567

    Article  CAS  PubMed  Google Scholar 

  46. Ujiie M, Dickstein DL, Carlow DA et al (2003) Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 10:463–470

    CAS  PubMed  Google Scholar 

  47. Friedman A, Kaufer D, Heinemann U (2009) Blood-brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res 85:142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bennett J, Basivireddy J, Kollar A et al (2010) Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol 229:180–191

    Article  CAS  PubMed  Google Scholar 

  49. Nishitsuji K, Hosono T, Nakamura T et al (2011) Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J Biol Chem 286:17536–17542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim DW, Moon Y, Gee Noh H et al (2011) Blood-brain barrier disruption is involved in seizure and hemianopsia in nonketotic hyperglycemia. Neurologist 17:164–166

    Article  PubMed  Google Scholar 

  51. Pfeiffer F, Schafer J, Lyck R et al (2011) Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathol 122:601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245

    Article  PubMed  Google Scholar 

  53. Sandoval KE, Witt KA (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219

    Article  CAS  PubMed  Google Scholar 

  54. Knowland D, Arac A, Sekiguchi KJ et al (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82:603–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stamatovic SM, Dimitrijevic OB, Keep RF et al (2006) Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochir Suppl 96:444–450

    Article  CAS  PubMed  Google Scholar 

  56. Rochfort KD, Collins LE, Murphy RP et al (2014) Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS One 9:e101815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rochfort KD, Collins LE, McLoughlin A et al (2016) Tumour necrosis factor-alpha-mediated disruption of cerebrovascular endothelial barrier integrity in vitro involves the production of proinflammatory interleukin-6. J Neurochem 136:564–572

    Article  CAS  PubMed  Google Scholar 

  58. McLoughlin A, Rochfort KD, McDonnell CJ et al (2017) Staphylococcus aureus-mediated blood-brain barrier injury: an in vitro human brain microvascular endothelial cell model. Cell Microbiol 19:e12664

    Article  CAS  Google Scholar 

  59. Summerfield SG, Lucas AJ, Porter RA et al (2008) Toward an improved prediction of human in vivo brain penetration. Xenobiotica 38:1518–1535

    Article  CAS  PubMed  Google Scholar 

  60. Nakagawa S, Deli MA, Kawaguchi H et al (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    Article  CAS  PubMed  Google Scholar 

  61. Lacombe O, Videau O, Chevillon D et al (2011) In vitro primary human and animal cell-based blood-brain barrier models as a screening tool in drug discovery. Mol Pharm 8:651–663

    Article  CAS  PubMed  Google Scholar 

  62. Ogunshola OO (2011) In vitro modeling of the blood-brain barrier: simplicity versus complexity. Curr Pharm Des 17:2755–2761

    Article  CAS  PubMed  Google Scholar 

  63. Naik P, Cucullo L (2012) In vitro blood-brain barrier models: current and perspective technologies. J Pharm Sci 101:1337–1354

    Article  CAS  PubMed  Google Scholar 

  64. Perel P, Roberts I, Sena E et al (2007) Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ 334:197–202

    Article  CAS  PubMed  Google Scholar 

  65. Reichel A (2006) The role of blood-brain barrier studies in the pharmaceutical industry. Curr Drug Metab 7:183–203

    Article  CAS  PubMed  Google Scholar 

  66. Cecchelli R, Dehouck B, Descamps L et al (1999) In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 36:165–178

    Article  CAS  PubMed  Google Scholar 

  67. Mabondzo A, Bottlaender M, Guyot AC et al (2010) Validation of in vitro cell-based human blood-brain barrier model using clinical positron emission tomography radioligands to predict in vivo human brain penetration. Mol Pharm 7:1805–1815

    Article  CAS  PubMed  Google Scholar 

  68. Cecchelli R, Aday S, Sevin E et al (2014) A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells. PLoS One 9:e99733

    Article  PubMed  PubMed Central  Google Scholar 

  69. Garberg P, Ball M, Borg N et al (2005) In vitro models for the blood-brain barrier. Toxicol In Vitro 19:299–334

    Article  CAS  PubMed  Google Scholar 

  70. Avdeef A (2011) How well can in vitro brain microcapillary endothelial cell models predict rodent in vivo blood-brain barrier permeability? Eur J Pharm Sci 43:109–124

    Article  CAS  PubMed  Google Scholar 

  71. Summerfield SG, Read K, Begley DJ et al (2007) Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther 322:205–213

    Article  CAS  PubMed  Google Scholar 

  72. Potschka H (2010) Targeting regulation of ABC efflux transporters in brain diseases: a novel therapeutic approach. Pharmacol Ther 125:118–127

    Article  CAS  PubMed  Google Scholar 

  73. Rebitzer S, Annibali D, Kopp S et al (2003) In silico screening with benzofurane- and benzopyrane-type MDR-modulators. Farmaco 58:185–191

    Article  CAS  PubMed  Google Scholar 

  74. Ecker GF, Noe CR (2004) In silico prediction models for blood-brain barrier permeation. Curr Med Chem 11:1617–1628

    Article  CAS  PubMed  Google Scholar 

  75. Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241:49–55

    Article  CAS  PubMed  Google Scholar 

  77. Wang Q, Rager JD, Weinstein K et al (2005) Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm 288:349–359

    Article  CAS  PubMed  Google Scholar 

  78. Nazer B, Hong S, Selkoe DJ (2008) LRP promotes endocytosis and degradation, but not transcytosis, of the amyloid-beta peptide in a blood-brain barrier in vitro model. Neurobiol Dis 30:94–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu ZB, Makhija SK, Lu B et al (2004) Transport across a polarized monolayer of Caco-2 cells by transferrin receptor-mediated adenovirus transcytosis. Virology 325:116–128

    Article  CAS  PubMed  Google Scholar 

  80. Hellinger E, Veszelka S, Toth AE et al (2012) Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur J Pharm Biopharm 82:340–351

    Article  CAS  PubMed  Google Scholar 

  81. Lohmann C, Huwel S, Galla HJ (2002) Predicting blood-brain barrier permeability of drugs: evaluation of different in vitro assays. J Drug Target 10:263–276

    Article  CAS  PubMed  Google Scholar 

  82. Lundquist S, Renftel M, Brillault J et al (2002) Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models. Pharm Res 19:976–981

    Article  CAS  PubMed  Google Scholar 

  83. Coisne C, Dehouck L, Faveeuw C et al (2005) Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Investig 85:734–746

    Article  CAS  PubMed  Google Scholar 

  84. Watson PM, Paterson JC, Thom G et al (2013) Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci 14:59

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bowman PD, Ennis SR, Rarey KE et al (1983) Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 14:396–402

    Article  CAS  PubMed  Google Scholar 

  86. Patabendige A, Skinner RA, Abbott NJ (2013) Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res 1521:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Joo F, Karnushina I (1973) A procedure for the isolation of capillaries from rat brain. Cytobios 8:41–48

    CAS  PubMed  Google Scholar 

  88. Panula P, Joo F, Rechardt L (1978) Evidence for the presence of viable endothelial cells in cultures derived from dissociated rat brain. Experientia 34:95–97

    Article  CAS  PubMed  Google Scholar 

  89. DeBault LE, Kahn LE, Frommes SP et al (1979) Cerebral microvessels and derived cells in tissue culture: isolation and preliminary characterization. In Vitro 15:473–487

    Article  CAS  PubMed  Google Scholar 

  90. Markovac J, Goldstein GW (1988) Transforming growth factor beta activates protein kinase C in microvessels isolated from immature rat brain. Biochem Biophys Res Commun 150:575–582

    Article  CAS  PubMed  Google Scholar 

  91. Silbergeld DL, Ali-Osman F (1991) Isolation and characterization of microvessels from normal brain and brain tumors. J Neuro-Oncol 11:49–55

    Article  CAS  Google Scholar 

  92. Deli MA, Abraham CS, Kataoka Y et al (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    Article  PubMed  Google Scholar 

  93. Audus KL, Borchardt RT (1986) Characterization of an in vitro blood-brain barrier model system for studying drug transport and metabolism. Pharm Res 3:81–87

    Article  CAS  PubMed  Google Scholar 

  94. Audus KL, Borchardt RT (1987) Bovine brain microvessel endothelial cell monolayers as a model system for the blood-brain barrier. Ann N Y Acad Sci 507:9–18

    Article  CAS  PubMed  Google Scholar 

  95. Audus KL, Ng L, Wang W, Borchardt RT (1996) Brain microvessel endothelial cell culture systems. Pharm Biotechnol 8:239–258

    Article  CAS  PubMed  Google Scholar 

  96. Audus KL, Rose JM, Wang W et al (1998) Brain microvessel endothelial cell culture systems. In: Pardridge WM (ed) An introduction to the blood-brain barrier: methodology and biology. Cambridge University Press, New York, pp 86–93

    Chapter  Google Scholar 

  97. Tewes B, Franke H, Hellwig S et al (1997) Preparation of endothelial cells in primary cultures obtained from 6 month old pigs. In: de Boer AG, Sutanto W (eds) Transport across the blood brain barrier: in vitro and in vivo techniques. Harwood Academic, Amsterdam, pp 91–97

    Google Scholar 

  98. Franke H, Galla HJ, Beuckmann CT (1999) An improved low-permeability in vitro-model of the blood-brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res 818:65–71

    Article  CAS  PubMed  Google Scholar 

  99. Franke H, Galla H, Beuckmann CT (2000) Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro. Brain Res Brain Res Protoc 5:248–256

    Article  CAS  PubMed  Google Scholar 

  100. Wolburg H, Neuhaus J, Kniesel U et al (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107(Pt 5):1347–1357

    CAS  PubMed  Google Scholar 

  101. Claudio L, Raine CS, Brosnan CF (1995) Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol 90:228–238

    Article  CAS  PubMed  Google Scholar 

  102. Claudio L (1996) Ultrastructural features of the blood-brain barrier in biopsy tissue from Alzheimer’s disease patients. Acta Neuropathol 91:6–14

    Article  CAS  PubMed  Google Scholar 

  103. Najjar S, Pearlman DM, Devinsky O et al (2013) Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J Neuroinflammation 10:906

    Article  CAS  Google Scholar 

  104. Begley DJ, Lechardeur D, Chen ZD et al (1996) Functional expression of P-glycoprotein in an immortalised cell line of rat brain endothelial cells, RBE4. J Neurochem 67:988–995

    Article  CAS  PubMed  Google Scholar 

  105. Roux F, Durieu-Trautmann O, Chaverot N et al (1994) Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J Cell Physiol 159:101–113

    Article  CAS  PubMed  Google Scholar 

  106. Greenwood J, Pryce G, Devine L et al (1996) SV40 large T immortalised cell lines of the rat blood-brain and blood-retinal barriers retain their phenotypic and immunological characteristics. J Neuroimmunol 71:51–63

    Article  CAS  PubMed  Google Scholar 

  107. Regina A, Romero IA, Greenwood J et al (1999) Dexamethasone regulation of P-glycoprotein activity in an immortalized rat brain endothelial cell line, GPNT. J Neurochem 73:1954–1963

    CAS  PubMed  Google Scholar 

  108. Williams RL, Courtneidge SA, Wagner EF (1988) Embryonic lethalities and endothelial tumors in chimeric mice expressing polyoma virus middle T oncogene. Cell 52:121–131

    Article  CAS  PubMed  Google Scholar 

  109. Williams RL, Risau W, Zerwes HG et al (1989) Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell 57:1053–1063

    Article  CAS  PubMed  Google Scholar 

  110. Wagner EF, Risau W (1994) Oncogenes in the study of endothelial cell growth and differentiation. Semin Cancer Biol 5:137–145

    CAS  PubMed  Google Scholar 

  111. Burek M, Salvador E, Forster CY (2012) Generation of an immortalized murine brain microvascular endothelial cell line as an in vitro blood brain barrier model. J Vis Exp 66:e4022

    Google Scholar 

  112. Urich E, Lazic SE, Molnos J et al (2012) Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models. PLoS One 7:e38149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Butt AM, Jones HC (1992) Effect of histamine and antagonists on electrical resistance across the blood-brain barrier in rat brain-surface microvessels. Brain Res 569:100–105

    Article  CAS  PubMed  Google Scholar 

  114. Hoheisel D, Nitz T, Franke H et al (1998) Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 244:312–316

    Article  CAS  PubMed  Google Scholar 

  115. Weidenfeller C, Schrot S, Zozulya A et al (2005) Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res 1053:162–174

    Article  CAS  PubMed  Google Scholar 

  116. Kroll S, El-Gindi J, Thanabalasundaram G et al (2009) Control of the blood-brain barrier by glucocorticoids and the cells of the neurovascular unit. Ann N Y Acad Sci 1165:228–239

    Article  PubMed  CAS  Google Scholar 

  117. Paolinelli R, Corada M, Ferrarini L et al (2013) Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS One 8:e70233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mizee MR, Wooldrik D, Lakeman KA et al (2013) Retinoic acid induces blood-brain barrier development. J Neurosci 33:1660–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Warren MS, Zerangue N, Woodford K et al (2009) Comparative gene expression profiles of ABC transporters in brain microvessel endothelial cells and brain in five species including human. Pharmacol Res 59:404–413

    Article  CAS  PubMed  Google Scholar 

  120. Uchida Y, Tachikawa M, Obuchi W et al (2013) A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood-brain barrier in ddY, FVB, and C57BL/6J mice. Fluids Barriers CNS 10:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hoshi Y, Uchida Y, Tachikawa M et al (2013) Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci 102:3343–3355

    Article  CAS  PubMed  Google Scholar 

  122. Avdeef A, Deli MA, Neuhaus W (2015) In vitro assays for assessing BBB permeability: artificial membrane and cell culture models. In: Di L, Kerns EH (eds) Blood-brain barrier in drug discovery: optimising brain exposure of CNS drugs and minimizing brain side effects for peripheral drugs. Wiley, New York, pp 188–223

    Google Scholar 

  123. Durieu-Trautmann O, Foignant-Chaverot N, Perdomo J et al (1991) Immortalization of brain capillary endothelial cells with maintenance of structural characteristics of the blood-brain barrier endothelium. In Vitro Cell Dev Biol 27A:771–778

    Article  CAS  PubMed  Google Scholar 

  124. Muruganandam A, Herx LM, Monette R et al (1997) Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood-brain barrier. FASEB J 11:1187–1197

    Article  CAS  PubMed  Google Scholar 

  125. Stins MF, Badger J, Sik Kim K (2001) Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathog 30:19–28

    Article  CAS  PubMed  Google Scholar 

  126. Weksler BB, Subileau EA, Perriere N et al (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    Article  CAS  PubMed  Google Scholar 

  127. Schreibelt G, Kooij G, Reijerkerk A et al (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676

    Article  CAS  PubMed  Google Scholar 

  128. Wilhelm I, Farkas AE, Nagyoszi P et al (2007) Regulation of cerebral endothelial cell morphology by extracellular calcium. Phys Med Biol 52:6261–6274

    Article  CAS  PubMed  Google Scholar 

  129. Lim JC, Kania KD, Wijesuriya H et al (2008) Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem 106:1855–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wilhelm I, Nagyoszi P, Farkas AE et al (2008) Hyperosmotic stress induces Axl activation and cleavage in cerebral endothelial cells. J Neurochem 107:116–126

    Article  CAS  PubMed  Google Scholar 

  131. Poller B, Gutmann H, Krahenbuhl S et al (2008) The human brain endothelial cell line hCMEC/D3 as a human blood-brain barrier model for drug transport studies. J Neurochem 107:1358–1368

    Article  CAS  PubMed  Google Scholar 

  132. Fischer S, Nishio M, Peters SC et al (2009) Signaling mechanism of extracellular RNA in endothelial cells. FASEB J 23:2100–2109

    Article  CAS  PubMed  Google Scholar 

  133. Ohtsuki S, Ikeda C, Uchida Y et al (2013) Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol Pharm 10:289–296

    Article  CAS  PubMed  Google Scholar 

  134. Eigenmann DE, Xue G, Kim KS et al (2013) Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 10:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Brendel K, Meezan E, Carlson EC (1974) Isolated brain microvessels: a purified, metabolically active preparation from bovine cerebral cortex. Science 185:953–955

    Article  CAS  PubMed  Google Scholar 

  136. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  CAS  PubMed  Google Scholar 

  137. DeSalvo MK, Mayer N, Mayer F et al (2011) Physiologic and anatomic characterization of the brain surface glia barrier of Drosophila. Glia 59:1322–1340

    Article  PubMed  PubMed Central  Google Scholar 

  138. Abdelilah-Seyfried S (2010) Claudin-5a in developing zebrafish brain barriers: another brick in the wall. BioEssays 32:768–776

    Article  CAS  PubMed  Google Scholar 

  139. Eliceiri BP, Gonzalez AM, Baird A (2011) Zebrafish model of the blood-brain barrier: morphological and permeability studies. Methods Mol Biol 686:371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Umans RA, Taylor MR (2012) Zebrafish as a model to study drug transporters at the blood-brain barrier. Clin Pharmacol Ther 92:567–570

    Article  CAS  PubMed  Google Scholar 

  141. Watanabe K, Nishimura Y, Nomoto T et al (2012) In vivo assessment of the permeability of the blood-brain barrier and blood-retinal barrier to fluorescent indoline derivatives in zebrafish. BMC Neurosci 13:101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fleming A, Diekmann H, Goldsmith P (2013) Functional characterisation of the maturation of the blood-brain barrier in larval zebrafish. PLoS One 8:e77548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Stewart AM, Braubach O, Spitsbergen J et al (2014) Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci 37:264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Syvanen S, Lindhe O, Palner M et al (2009) Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 37:635–643

    Article  PubMed  CAS  Google Scholar 

  145. Ito K, Uchida Y, Ohtsuki S et al (2011) Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100:3939–3950

    Article  CAS  PubMed  Google Scholar 

  146. Engelhardt B, Liebner S (2014) Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res 355:687–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pottiez G, Duban-Deweer S, Deracinois B et al (2011) A differential proteomic approach identifies structural and functional components that contribute to the differentiation of brain capillary endothelial cells. J Proteome 75:628–641

    Article  CAS  Google Scholar 

  148. Deracinois B, Pottiez G, Chafey P et al (2013) Glial-cell-mediated re-induction of the blood-brain barrier phenotype in brain capillary endothelial cells: a differential gel electrophoresis study. Proteomics 13:1185–1199

    Article  CAS  PubMed  Google Scholar 

  149. Yousif LF, Di Russo J, Sorokin L (2013) Laminin isoforms in endothelial and perivascular basement membranes. Cell Adhes Migr 7:101–110

    Article  Google Scholar 

  150. Hartmann C, Zozulya A, Wegener J, Galla HJ (2007) The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 313:1318–1325

    Article  CAS  PubMed  Google Scholar 

  151. Kim JA, Tran ND, Li Z et al (2006) Brain endothelial hemostasis regulation by pericytes. J Cereb Blood Flow Metab 26:209–217

    Article  PubMed  CAS  Google Scholar 

  152. Hori S, Ohtsuki S, Hosoya K et al (2004) A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem 89:503–513

    Article  CAS  PubMed  Google Scholar 

  153. Dohgu S, Takata F, Yamauchi A et al (2005) Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res 1038:208–215

    Article  CAS  PubMed  Google Scholar 

  154. Nakagawa S, Deli MA, Nakao S et al (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 27:687–694

    Article  CAS  PubMed  Google Scholar 

  155. Berezowski V, Landry C, Dehouck MP et al (2004) Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the BBB. Brain Res 1018:1–9

    Article  CAS  PubMed  Google Scholar 

  156. Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: Pericyte. Brain Res Brain Res Rev 50:258–265

    Article  CAS  PubMed  Google Scholar 

  157. Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14:1581–1593

    Article  CAS  PubMed  Google Scholar 

  158. Daneman R, Zhou L, Kebede AA et al (2010) Pericytes are required for BBB integrity during embryogenesis. Nature 468:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hellstrom M, Gerhardt H, Kalen M et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Armulik A, Genove G, Mae M et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  161. Hayashi K, Nakao S, Nakaoke R et al (2004) Effects of hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier. Regul Pept 123:77–83

    Article  CAS  PubMed  Google Scholar 

  162. Kacem K, Lacombe P, Seylaz J et al (1998) Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study. Glia 23:1–10

    Article  CAS  PubMed  Google Scholar 

  163. Hamm S, Dehouck B, Kraus J et al (2004) Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 315:157–166

    Article  PubMed  Google Scholar 

  164. Tao-Cheng JH, Nagy Z, Brightman MW (1987) Tight junctions of brain endothelium in vitro are enhanced by astroglia. J Neurosci 7:3293–3299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Laterra J, Guerin C, Goldstein GW (1990) Astrocytes induce neural microvascular endothelial cells to form capillary-like structures in vitro. J Cell Physiol 144:204–215

    Article  CAS  PubMed  Google Scholar 

  166. Webersinke G, Bauer H, Amberger A et al (1992) Comparison of gene expression of extracellular matrix molecules in brain microvascular endothelial cells and astrocytes. Biochem Biophys Res Commun 189:877–884

    Article  CAS  PubMed  Google Scholar 

  167. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  168. Taber KH, Hurley RA (2008) Astroglia: not just glue. J Neuropsychiatry Clin Neurosci 20:124–129

    Google Scholar 

  169. Liberto CM, Albrecht PJ, Herx LM et al (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092–1100

    Article  CAS  PubMed  Google Scholar 

  170. DeBault LE, Cancilla PA (1980) Gamma-glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science 207:653–655

    Article  CAS  PubMed  Google Scholar 

  171. Davson H, Oldendorf WH (1967) Symposium on membrane transport. Transport in the central nervous system. Proc R Soc Med 60:326–329

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Hori S, Ohtsuki S, Tachikawa M et al (2004) Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem 90:526–536

    Article  CAS  PubMed  Google Scholar 

  173. Gaillard PJ, Voorwinden LH, Nielsen JL et al (2001) Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci 12:215–222

    Article  CAS  PubMed  Google Scholar 

  174. Jeliazkova-Mecheva VV, Bobilya DJ (2003) A porcine astrocyte/endothelial cell co-culture model of the blood-brain barrier. Brain Res Brain Res Protoc 12:91–98

    Article  CAS  PubMed  Google Scholar 

  175. Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (muBBB). Lab Chip 12:1784–1792

    Article  CAS  PubMed  Google Scholar 

  176. Colgan OC, Collins NT, Ferguson G et al (2008) Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function. Brain Res 1193:84–92

    Article  CAS  PubMed  Google Scholar 

  177. Tontsch U, Bauer HC (1991) Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells. Brain Res 539:247–253

    Article  CAS  PubMed  Google Scholar 

  178. Ginhoux F, Greter M, Leboeuf M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. da Fonseca AC, Matias D, Garcia C et al (2014) The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 8:362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Cestelli A, Catania C, D’Agostino S et al (2001) Functional feature of a novel model of blood brain barrier: studies on permeation of test compounds. J Control Release 76:139–147

    Article  CAS  PubMed  Google Scholar 

  182. Weidenfeller C, Svendsen CN, Shusta EV (2007) Differentiating embryonic neural progenitor cells induce blood-brain barrier properties. J Neurochem 101:555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Stamatovic SM, Shakui P, Keep RF et al (2005) Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab 25:593–606

    Article  CAS  PubMed  Google Scholar 

  184. Veszelka S, Pasztoi M, Farkas AE et al (2007) Pentosan polysulfate protects brain endothelial cells against bacterial lipopolysaccharide-induced damages. Neurochem Int 50:219–228

    Article  CAS  PubMed  Google Scholar 

  185. Hutamekalin P, Farkas AE, Orbok A et al (2008) Effect of nicotine and polyaromtic hydrocarbons on cerebral endothelial cells. Cell Biol Int 32:198–209

    Article  CAS  PubMed  Google Scholar 

  186. Raub TJ (1996) Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am J Phys 271:C495–C503

    Article  CAS  Google Scholar 

  187. Zysk G, Schneider-Wald BK, Hwang JH et al (2001) Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect Immun 69:845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Smith M, Omidi Y, Gumbleton M (2007) Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target 15:253–268

    Article  CAS  PubMed  Google Scholar 

  189. Cohen-Kashi Malina K, Cooper I, Teichberg VI (2009) Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness. Brain Res 1284:12–21

    Article  CAS  PubMed  Google Scholar 

  190. Dehouck MP, Meresse S, Delorme P et al (1990) An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem 54:1798–1801

    Article  CAS  PubMed  Google Scholar 

  191. Culot M, Lundquist S, Vanuxeem D et al (2008) An in vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro 22:799–811

    Article  CAS  PubMed  Google Scholar 

  192. Vandenhaute E, Sevin E, Hallier-Vanuxeem D et al (2012) Case study: adapting in vitro blood-brain barrier models for use in early-stage drug discovery. Drug Discov Today 17:285–290

    Article  PubMed  Google Scholar 

  193. Rubin LL, Hall DE, Porter S et al (1991) A cell culture model of the blood-brain barrier. J Cell Biol 115:1725–1735

    Article  CAS  PubMed  Google Scholar 

  194. Schiera G, Sala S, Gallo A et al (2005) Permeability properties of a three-cell type in vitro model of blood-brain barrier. J Cell Mol Med 9:373–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Vandenhaute E, Dehouck L, Boucau MC et al (2011) Modelling the neurovascular unit and the blood-brain barrier with the unique function of pericytes. Curr Neurovasc Res 8:258–269

    Article  CAS  PubMed  Google Scholar 

  196. Xue Q, Liu Y, Qi H et al (2013) A novel brain neurovascular unit model with neurons, astrocytes and microvascular endothelial cells of rat. Int J Biol Sci 9:174–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Al Ahmad A, Gassmann M, Ogunshola OO (2009) Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol 218:612–622

    Article  PubMed  CAS  Google Scholar 

  198. Appelt-Menzel A, Cubukova A, Gunther K et al (2017) Establishment of a human blood-brain barrier co-culture model mimicking the neurovascular unit using induced pluripotent and multipotent stem cells. Stem Cell Rep 8:894–906

    Article  CAS  Google Scholar 

  199. Wilhelm I, Krizbai IA (2014) In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm 11:1949–1963

    Article  CAS  PubMed  Google Scholar 

  200. Ziegler T, Nerem RM (1994) Effect of flow on the process of endothelial cell division. Arterioscler Thromb 14:636–643

    Article  CAS  PubMed  Google Scholar 

  201. Cucullo L, McAllister MS, Kight K et al (2002) A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res 951:243–254

    Article  CAS  PubMed  Google Scholar 

  202. Tarbell JM (2010) Shear stress and the endothelial transport barrier. Cardiovasc Res 87:320–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Siddharthan V, Kim YV, Liu S et al (2007) Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res 1147:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Griep LM, Wolbers F, de Wagenaar B et al (2013) BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15:145–150

    Article  CAS  PubMed  Google Scholar 

  205. Rochfort KD, Cummins PM (2015) Thrombomodulin regulation in human brain microvascular endothelial cells in vitro: role of cytokines and shear stress. Microvasc Res 97:1–5

    Article  CAS  PubMed  Google Scholar 

  206. Rochfort KD, Collins LE, McLoughlin A et al (2015) Shear-dependent attenuation of cellular ROS levels can suppress proinflammatory cytokine injury to human brain microvascular endothelial barrier properties. J Cereb Blood Flow Metab 35:1648–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ballermann BJ, Ott MJ (1995) Adhesion and differentiation of endothelial cells by exposure to chronic shear stress: a vascular graft model. Blood Purif 13:125–134

    Article  CAS  PubMed  Google Scholar 

  208. Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685

    Article  CAS  PubMed  Google Scholar 

  209. Ballermann BJ, Dardik A, Eng E et al (1998) Shear stress and the endothelium. Kidney Int Suppl 67:S100–S108

    Article  CAS  PubMed  Google Scholar 

  210. Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73:1983–1992

    Article  CAS  PubMed  Google Scholar 

  211. Cucullo L, Couraud PO, Weksler B et al (2008) Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab 28:312–328

    Article  CAS  PubMed  Google Scholar 

  212. Santaguida S, Janigro D, Hossain M et al (2006) Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Res 1109:1–13

    Article  CAS  PubMed  Google Scholar 

  213. Stanness KA, Westrum LE, Fornaciari E et al (1997) Morphological and functional characterization of an in vitro blood-brain barrier model. Brain Res 771:329–342

    Article  CAS  PubMed  Google Scholar 

  214. Dewey CF Jr, Bussolari SR et al (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Article  PubMed  Google Scholar 

  215. Bussolari SR, Dewey CF Jr, Gimbrone MA Jr (1982) Apparatus for subjecting living cells to fluid shear stress. Rev Sci Instrum 53:1851–1854

    Article  CAS  PubMed  Google Scholar 

  216. Walsh TG, Murphy RP, Fitzpatrick P et al (2011) Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels. J Cell Physiol 226:3053–3063

    Article  CAS  PubMed  Google Scholar 

  217. Takeshita Y, Obermeier B, Cotleur A et al (2014) An in vitro blood-brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. J Neurosci Methods 232:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Cucullo L, Marchi N, Hossain M et al (2011) A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab 31:767–777

    Article  CAS  PubMed  Google Scholar 

  219. Yeon JH, Na D, Choi K et al (2012) Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevices 14:1141–1148

    Article  CAS  PubMed  Google Scholar 

  220. Prabhakarpandian B, Shen MC, Nichols JB et al (2013) SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Alcendor DJ, Block FE 3rd, Cliffel DE et al (2013) Neurovascular unit on a chip: implications for translational applications. Stem Cell Res Ther 4(Suppl 1):S18

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the National Development Plan/Higher Education Authority of Ireland Programme for Research in Third Level Institutes (HEA/PRTLI Cycle 4—T3 Targeted Therapeutics and Theranostics) and from Science Foundation Ireland (US-Ireland R&D Partnership Programme, Grant No. 14/US/B3116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith D. Rochfort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rochfort, K.D., Cummins, P.M. (2019). In Vitro Cell Models of the Human Blood-Brain Barrier: Demonstrating the Beneficial Influence of Shear Stress on Brain Microvascular Endothelial Cell Phenotype. In: Barichello, T. (eds) Blood-Brain Barrier. Neuromethods, vol 142. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8946-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8946-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8945-4

  • Online ISBN: 978-1-4939-8946-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics