Skip to main content

In Vitro Methods for Assessing Nanoparticle Toxicity

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1894))

Abstract

As a consequence of their increase in annual production and widespread distribution in the environment, nanoparticles potentially pose a significant public health risk. The sought-after catalytic activity granted by their physiochemical properties doubles as a hazard to physiological processes following exposure through inhalation, oral, transdermal, subcutaneous, and intravenous uptake. Upon uptake into the body, their size, morphology, surface charge, coating, and chemical composition augment the response of biological systems to the materials and enhance their toxicity. Identification of each property is necessary to predict the harm imposed by foreign nanomaterials in the body. Assay methods ranging from endotoxin and lactate dehydrogenase (LDH) signaling to apoptosis and oxidative stress detection supply valuable techniques for exposing biomarkers of nanoparticle-induced cellular damage. Spectroscopic investigation of epithelial barrier permeation and distribution within living cells reveals the proclivity of nanoparticles to penetrate the body’s natural defensive boundaries and deposit themselves in cytotoxic locations. Combination of the various characterization methodologies and assays is required for every new nanoparticulate system despite preexisting data for similar systems due to the lack of deterministic trends among investigated nanoparticles. The propensity of nanomaterials to denature proteins and oxidize substrates in their local environment generates significant concern for the applicability of several traditional in vitro assays, and the modification of susceptible approaches into novel methods suitable for the evaluation of nanoparticles comprises the focus of future work centered on nanoparticle toxicity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3–3. https://doi.org/10.1186/1477-3155-2-3

    Article  Google Scholar 

  2. Eifler AC, Thaxton CS (2011) Nanoparticle Therapeutics: FDA Approval, Clinical Trials, Regulatory Pathways, and Case Study. In: Hurst SJ (ed) Biomedical Nanotechnology: Methods and Protocols. Humana, Totowa, NJ, pp 325–338. https://doi.org/10.1007/978-1-61779-052-2_21

    Chapter  Google Scholar 

  3. Priyadarsini S, Mukherjee S, Mishra M (2018) Nanoparticles used in dentistry: a review. J Oral Biol Craniofac Res 8(1):58–67. https://doi.org/10.1016/j.jobcr.2017.12.004

    Article  PubMed  Google Scholar 

  4. Copéret C, Héroguel F (2017) Recent advances in surface organometallic chemistry. In: Cornils B, Herrmann WA, Beller M, Paciello R (eds) Applied homogeneous catalysis with organometallic compounds. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 1069–1084. https://doi.org/10.1002/9783527651733.ch15

    Chapter  Google Scholar 

  5. Yan N, Xiao C, Kou Y (2010) Transition metal nanoparticle catalysis in green solvents. Coord Chem Rev 254(9):1179–1218. https://doi.org/10.1016/j.ccr.2010.02.015

    Article  CAS  Google Scholar 

  6. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116. https://doi.org/10.1111/j.1750-3841.2006.00195.x

    Article  CAS  Google Scholar 

  7. Contado C (2015) Nanomaterials in consumer products: a challenging analytical problem. Front Chem 3:48. https://doi.org/10.3389/fchem.2015.00048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4(3):186–193. https://doi.org/10.4103/0975-7406.99016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Boxberg F, Tulkki J (2004) Quantum dots: phenomenology, photonic and electronic properties, modeling and technology. the handbook of nanotechnology. Nanometer structures: theory, modeling, and simulation. SPIE Press, Bellingham. https://doi.org/10.1117/3.537698.ch4

    Book  Google Scholar 

  10. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7(1):144–144. https://doi.org/10.1186/1556-276X-7-144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Smulders S, Luyts K, Brabants G, Landuyt KV, Kirschhock C, Smolders E, Golanski L, Vanoirbeek J, Hoet PHM (2014) Toxicity of nanoparticles embedded in paints compared with pristine nanoparticles in mice. Toxicol Sci 141(1):132–140. https://doi.org/10.1093/toxsci/kfu112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  13. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343. https://doi.org/10.1039/c1cs15188f

    Article  CAS  PubMed  Google Scholar 

  14. Corbo C, Molinaro R, Parodi A, Furman NET, Salvatore F, Tasciotti E (2016) The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11(1):81–100. https://doi.org/10.2217/nnm.15.188

    Article  CAS  PubMed  Google Scholar 

  15. Kumar V, Sharma N, Maitra SS (2017) In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 7(4):243–256. https://doi.org/10.1007/s40089-017-0221-3

    Article  CAS  Google Scholar 

  16. Clichici S, Filip A (2015) In vivo assessment of nanomaterials toxicity. Nanomaters toxicity and risk assessment. https://doi.org/10.5772/60707

    Google Scholar 

  17. Vasilakes AL, Dziubla TD, Wattamwar PP (2013) Polymeric nanoparticles. In: Bader RA (ed) Engineering polymer systems for improved drug delivery. John Wiley & Sons, Inc., pp 117–161. https://doi.org/10.1002/9781118747896.ch5

    Chapter  Google Scholar 

  18. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815. https://doi.org/10.1038/nnano.2011.166 https://www.nature.com/articles/nnano.2011.166#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  19. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915. https://doi.org/10.1021/nl900031y

    Article  CAS  PubMed  Google Scholar 

  20. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145. https://doi.org/10.1038/nnano.2008.30 https://www.nature.com/articles/nnano.2008.30#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  21. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653. https://doi.org/10.1038/nrclinonc.2010.139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Caldorera-Moore M, Guimard N, Shi L, Roy K (2010) Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 7(4):479–495. https://doi.org/10.1517/17425240903579971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105(33):11613–11618. https://doi.org/10.1073/pnas.0801763105

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huo S, Jiang Y, Gupta A, Jiang Z, Landis RF, Hou S, Liang XJ, Rotello VM (2016) Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure. ACS Nano 10(9):8732–8737. https://doi.org/10.1021/acsnano.6b04207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Fleischer CC, Payne CK (2014) Nanoparticle–cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res 47(8):2651–2659. https://doi.org/10.1021/ar500190q

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Vroman L, Adams AL (1969) Identification of rapid changes at plasma–solid interfaces. J Biomed Mater Res 3(1):43–67. https://doi.org/10.1002/jbm.820030106

    Article  CAS  PubMed  Google Scholar 

  27. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010

    Article  CAS  PubMed  Google Scholar 

  28. Li S-D, Huang L (2010) Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 145(3):178–181. https://doi.org/10.1016/j.jconrel.2010.03.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, Napier M, Bear JE, DeSimone JM (2012) PEGylated PRINT nanoparticles: the impact of peg density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett 12(10):5304–5310. https://doi.org/10.1021/nl302638g

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cochran DB, Wattamwar PP, Wydra R, Hilt JZ, Anderson KW, Eitel RE, Dziubla TD (2013) Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles. Biomaterials 34(37):9615–9622. https://doi.org/10.1016/j.biomaterials.2013.08.025

    Article  CAS  PubMed  Google Scholar 

  31. Fan M, Zeng Y, Ruan H, Zhang Z, Gong T, Sun X (2017) Ternary nanoparticles with a sheddable shell efficiently deliver microRNA-34a against CD44-positive melanoma. Mol Pharm 14(9):3152–3163. https://doi.org/10.1021/acs.molpharmaceut.7b00377

    Article  CAS  PubMed  Google Scholar 

  32. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1–11. https://doi.org/10.7508/ibj.2016.01.001

    Article  PubMed Central  PubMed  Google Scholar 

  33. Han SG, Newsome B, Hennig B (2013) Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells. Toxicology 306:1–8. https://doi.org/10.1016/j.tox.2013.01.014

    Article  CAS  PubMed  Google Scholar 

  34. Donaldson K, Stone V (2003) Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 39(3):405–410

    CAS  PubMed  Google Scholar 

  35. Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7(1):39. https://doi.org/10.1186/1743-8977-7-39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Bhattacharjee S (2016) DLS and zeta potential – what they are and what they are not? J Control Release 235:337–351. https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  37. Lim J, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8(1):381–381. https://doi.org/10.1186/1556-276X-8-381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Pecora R (1968) Spectrum of light scattered from optically anisotropic macromolecules. J Chem Phys 49(3):1036–1043. https://doi.org/10.1063/1.1670189

    Article  CAS  Google Scholar 

  39. Rodríguez-Fernández J, Pérez-Juste J, Liz-Marzán LM, Lang PR (2007) Dynamic light scattering of short Au rods with low aspect ratios. J Phys Chem C 111(13):5020–5025. https://doi.org/10.1021/jp067049x

    Article  CAS  Google Scholar 

  40. Kaszuba M, Corbett J, Watson FM, Jones A (2010) High-concentration zeta potential measurements using light-scattering techniques. Philos Transact A Math Phys Eng Sci 368(1927):4439–4451. https://doi.org/10.1098/rsta.2010.0175

    Article  CAS  Google Scholar 

  41. Brown MA, Goel A, Abbas Z (2016) Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew Chem Int Ed 55(11):3790–3794. https://doi.org/10.1002/anie.201512025

    Article  CAS  Google Scholar 

  42. Pfeiffer C, Rehbock C, Hühn D, Carrillo-Carrion C, de Aberasturi DJ, Merk V, Barcikowski S, Parak WJ (2014) Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface 11(96):20130931. https://doi.org/10.1098/rsif.2013.0931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Clogston JD, Patri AK (2011) Zeta potential measurement. In: McNeil SE (ed) Characterization of nanoparticles intended for drug delivery. Humana Press, Totowa, NJ, pp 63–70. https://doi.org/10.1007/978-1-60327-198-1_6

    Chapter  Google Scholar 

  44. Lin P-C, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726. https://doi.org/10.1016/j.biotechadv.2013.11.006

    Article  PubMed  Google Scholar 

  45. Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR (2008) Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 16(8):1450–1458. https://doi.org/10.1038/mt.2008.127

    Article  CAS  PubMed  Google Scholar 

  46. Lechtman E, Pignol JP (2017) Interplay between the gold nanoparticle sub-cellular localization, size, and the photon energy for radiosensitization. Sci Rep 7(1):13268. https://doi.org/10.1038/s41598-017-13736-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Singh L, Parboosing R, Kruger HG, Maguire GEM, Govender T (2016) Intracellular localization of gold nanoparticles with targeted delivery in MT-4 lymphocytes. Adv Nat Sci Nanosci Nanotechnol 7(4). https://doi.org/10.1088/2043-6262/7/4/045013

    Google Scholar 

  48. Tammam SN, Azzazy HM, Breitinger HG, Lamprecht A (2015) Chitosan nanoparticles for nuclear targeting: the effect of nanoparticle size and nuclear localization sequence density. Mol Pharm 12(12):4277–4289. https://doi.org/10.1021/acs.molpharmaceut.5b00478

    Article  CAS  PubMed  Google Scholar 

  49. Hewitt RE, Vis B, Pele LC, Faria N, Powell JJ (2017) Imaging flow cytometry assays for quantifying pigment grade titanium dioxide particle internalization and interactions with immune cells in whole blood. Cytometry A 91(10):1009–1020. https://doi.org/10.1002/cyto.a.23245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ostrowski A, Nordmeyer D, Boreham A, Holzhausen C, Mundhenk L, Graf C, Meinke MC, Vogt A, Hadam S, Lademann J, Ruhl E, Alexiev U, Gruber AD (2015) Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J Nanotechnol 6:263–280. https://doi.org/10.3762/bjnano.6.25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bao D, Oh ZG, Chen Z (2016) Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front Plant Sci 7:32. https://doi.org/10.3389/fpls.2016.00032

    Article  PubMed Central  PubMed  Google Scholar 

  52. Chen H-H, Chien C-C, Petibois C, Wang C-L, Chu YS, Lai S-F, Hua T-E, Chen Y-Y, Cai X, Kempson IM, Hwu Y, Margaritondo G (2011) Quantitative analysis of nanoparticle internalization in mammalian cells by high resolution X-ray microscopy. J Nanobiotechnol 9(1):14. https://doi.org/10.1186/1477-3155-9-14

    Article  CAS  Google Scholar 

  53. Gottstein C, Wu G, Wong BJ, Zasadzinski JA (2013) Precise quantification of nanoparticle internalization. ACS Nano 7(6):4933–4945. https://doi.org/10.1021/nn400243d

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Cohen O, Granek R (2014) Nucleus-targeted drug delivery: theoretical optimization of nanoparticles decoration for enhanced intracellular active transport. Nano Lett 14(5):2515–2521. https://doi.org/10.1021/nl500248q

    Article  CAS  PubMed  Google Scholar 

  55. McNamara AL, Kam WW, Scales N, McMahon SJ, Bennett JW, Byrne HL, Schuemann J, Paganetti H, Banati R, Kuncic Z (2016) Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol. Phys Med Biol 61(16):5993–6010. https://doi.org/10.1088/0031-9155/61/16/5993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hemmerich PH, von Mikecz AH (2013) Defining the subcellular interface of nanoparticles by live-cell imaging. PLoS One 8(4):e62018. https://doi.org/10.1371/journal.pone.0062018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Derk R, Davidson DC, Manke A, Stueckle TA, Rojanasakul Y, Wang L (2015) Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier. Sens Biosensing Res 3:38–45. https://doi.org/10.1016/j.sbsr.2014.12.002

    Article  PubMed Central  PubMed  Google Scholar 

  58. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Autom 20(2):107–126. https://doi.org/10.1177/2211068214561025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Bannunah AM, Vllasaliu D, Lord J, Stolnik S (2014) Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharm 11(12):4363–4373. https://doi.org/10.1021/mp500439c

    Article  CAS  PubMed  Google Scholar 

  60. Ponsoda X, Jover R, Castell JV, Gómez-Lechón MJ (1991) Measurement of intracellular LDH activity in 96-well cultures: a rapid and automated assay for cytotoxicity studies. J Tissue Cult Methods 13(1):21–24. https://doi.org/10.1007/bf02388199

    Article  Google Scholar 

  61. Brunner KT, Mauel J, Cerottini JC, Chapuis B (1968) Quantitative assay of the lytic action of immune lymphoid cells of (51)Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14(2):181–196

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Babson AL, Babson SR (1973) Kinetic colorimetric measurement of serum lactate dehydrogenase activity. Clin Chem 19(7):766

    CAS  PubMed  Google Scholar 

  63. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1):55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  64. Riss T, Moravec R, Niles A, Duellman S, Benink H, Worzella T, Minor L (2013, Updated 1 Jul 2016) Cell viability assays. [Internet]

    Google Scholar 

  65. Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, Finkelstein JN, Elder A, Oberdorster G (2011) Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 287(1–3):99–104. https://doi.org/10.1016/j.tox.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  66. van Engeland M, Nieland LJW, Ramaekers FCS, Schutte B, Reutelingsperger CPM (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31(1):1–9. https://doi.org/10.1002/(SICI)1097-0320(19980101)31:1<1::AID-CYTO1>3.0.CO;2-R

    Article  PubMed  Google Scholar 

  67. Koopman G, Reutelingsperger C, Kuijten G, Keehnen R, Pals S, van Oers M (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84(5):1415–1420

    CAS  PubMed  Google Scholar 

  68. Fan T-J, Han L-H, Cong R-S, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin 37(11):719–727. https://doi.org/10.1111/j.1745-7270.2005.00108.x

    Article  CAS  PubMed  Google Scholar 

  69. Kaufmann SH, Lee SH, Meng XW, Loegering DA, Kottke TJ, Henzing AJ, Ruchaud S, Samejima K, Earnshaw WC (2008) Apoptosis-associated caspase activation assays. Methods 44(3):262–272. https://doi.org/10.1016/j.ymeth.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  70. Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11(1):1–5. https://doi.org/10.1016/0003-2697(65)90034-5

    Article  CAS  PubMed  Google Scholar 

  71. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130(4):1910–1917

    CAS  PubMed  Google Scholar 

  72. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader11Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable. Free Radic Biol Med 27(5):612–616. https://doi.org/10.1016/S0891-5849(99)00107-0

    Article  CAS  PubMed  Google Scholar 

  73. Gupta P, Jordan CT, Mitov MI, Butterfield DA, Hilt JZ, Dziubla TD (2016) Controlled curcumin release via conjugation into PBAE nanogels enhances mitochondrial protection against oxidative stress. Int J Pharm 511(2):1012–1021. https://doi.org/10.1016/j.ijpharm.2016.07.071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G, Ahn B-W, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. In: Abelson JN (ed) Methods in enzymology, vol 186. Academic, Cambridge, MA, pp 464–478. https://doi.org/10.1016/0076-6879(90)86141-H

    Chapter  Google Scholar 

  75. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1–2):23–38. https://doi.org/10.1016/s0009-8981(03)00003-2

    Article  CAS  PubMed  Google Scholar 

  76. Levine RL, Williams JA, Stadtman EP, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. In: Abelson JN (ed) Methods in enzymology, vol 233. Academic, Cambridge, MA, pp 346–357. https://doi.org/10.1016/S0076-6879(94)33040-9

    Chapter  Google Scholar 

  77. Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MT (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7(6):2154–2198. https://doi.org/10.1039/c4nr06670g

    Article  CAS  PubMed  Google Scholar 

  78. Olive PL, Banath JP, Durand RE (2012) Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. 1990. Radiat Res 178(2):AV35–AV42

    Article  CAS  PubMed  Google Scholar 

  79. OECD. Test no. 487: in vitro mammalian cell micronucleus test. OECD, Paris

    Google Scholar 

  80. Ellard S, Parry EM (1993) A modified protocol for the cytochalasin B in vitro micronucleus assay using whole human blood or separated lymphocyte cultures. Mutagenesis 8(4):317–320. https://doi.org/10.1093/mutage/8.4.317

    Article  CAS  PubMed  Google Scholar 

  81. OECD. Test no. 471: bacterial reverse mutation test. OECD, Paris

    Google Scholar 

  82. OECD. Test no. 473: in vitro mammalian chromosome aberration test. OECD, Paris

    Google Scholar 

  83. Doak SH, Manshian B, Jenkins GJ, Singh N (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 745(1–2):104–111. https://doi.org/10.1016/j.mrgentox.2011.09.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Ayala A, Munoz MF, Arguelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

    Article  CAS  Google Scholar 

  85. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  86. Moselhy HF, Reid RG, Yousef S, Boyle SP (2013) A specific, accurate, and sensitive measure of total plasma malondialdehyde by HPLC. J Lipid Res 54(3):852–858. https://doi.org/10.1194/jlr.D032698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128. https://doi.org/10.1016/0891-5849(91)90192-6

    Article  CAS  PubMed  Google Scholar 

  88. Weber D, Milkovic L, Bennett SJ, Griffiths HR, Zarkovic N, Grune T (2013) Measurement of HNE-protein adducts in human plasma and serum by ELISA-Comparison of two primary antibodies. Redox Biol 1:226–233. https://doi.org/10.1016/j.redox.2013.01.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Gérard-Monnier D, Erdelmeier I, Régnard K, Moze-Henry N, Yadan J-C, Chaudière J (1998) Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxicol 11(10):1176–1183. https://doi.org/10.1021/tx9701790

    Article  PubMed  Google Scholar 

  90. Bartosh TJ, Ylostalo JH (2014) Macrophage inflammatory assay. Bio Protoc 4(14):e1180

    PubMed  Google Scholar 

  91. Fujita T, Nolan GP, Ghosh S, Baltimore D (1992) Independent modes of transcriptional activation by the p50 and p65 subunits of NF-kappa B. Genes Dev 6(5):775–787. https://doi.org/10.1101/gad.6.5.775

    Article  CAS  PubMed  Google Scholar 

  92. L-f C, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-κB action regulated by reversible acetylation. Science 293(5535):1653–1657. https://doi.org/10.1126/science.1062374

    Article  Google Scholar 

  93. Kinoshita S, Akira S, Kishimoto T (1992) A member of the C/EBP family, NF-IL6 beta, forms a heterodimer and transcriptionally synergizes with NF-IL6. Proc Natl Acad Sci 89(4):1473–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Smale ST (2010) Luciferase assay. Cold Spring Harb Protoc 2010(5):pdb prot5421. https://doi.org/10.1101/pdb.prot5421

    Article  PubMed  Google Scholar 

  95. Bang FB (1956) A bacterial disease of Limulus polyphemus. Bull Johns Hopkins Hosp 98(5):325–351

    CAS  PubMed  Google Scholar 

  96. Hurley JC (1995) Endotoxemia: methods of detection and clinical correlates. Clin Microbiol Rev 8(2):268–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Smulders S, Kaiser JP, Zuin S, Van Landuyt KL, Golanski L, Vanoirbeek J, Wick P, Hoet PH (2012) Contamination of nanoparticles by endotoxin: evaluation of different test methods. Part Fibre Toxicol 9:41. https://doi.org/10.1186/1743-8977-9-41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Ding JL, Ho B (2010) Endotoxin detection – from limulus amebocyte lysate to recombinant factor C. In: Wang X, Quinn PJ (eds) Endotoxins: structure, function and recognition. Springer, Dordrecht, pp 187–208. https://doi.org/10.1007/978-90-481-9078-2_9

    Chapter  Google Scholar 

  99. Alwis KU, Milton DK (2006) Recombinant factor C assay for measuring endotoxin in house dust: comparison with LAL, and (1 → 3)-β-D-glucans. Am J Ind Med 49(4):296–300. https://doi.org/10.1002/ajim.20264

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Dziubla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Savage, D.T., Hilt, J.Z., Dziubla, T.D. (2019). In Vitro Methods for Assessing Nanoparticle Toxicity. In: Zhang, Q. (eds) Nanotoxicity. Methods in Molecular Biology, vol 1894. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8916-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8916-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8915-7

  • Online ISBN: 978-1-4939-8916-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics