Skip to main content

Phytoplasmas: An Introduction

  • Protocol
  • First Online:
Phytoplasmas

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1875))

Abstract

Phytoplasmas are among the most recently discovered plant pathogens. They are wall-less prokaryotes restricted to phloem tissue, associated with diseases affecting several hundred plant species. The impact of phytoplasma diseases on agriculture is impressive and, at the present day, no effective curative strategy has been developed. The availability of rapid and sensitive techniques for phytoplasma detection as well as the possibility to study their relationship with the host plants is a prerequisite for the management of phytoplasma-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weisburg WG, Tully JG, Rose DL et al (1989) A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171(12):6455–6467

    Article  CAS  Google Scholar 

  2. Doi Y, Teranaka M, Yora K et al (1967) Mycoplasma- or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or paulownia witches’ broom (in Japanese with English summary). Ann Phytopath Soc Japan 33:259–266

    Article  Google Scholar 

  3. IRPCM P, Spiroplasma, WTPTG (2004) Candidatus Phytoplasma', a taxon for the wall-less, nonhelical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54(Pt 4):1243

    Google Scholar 

  4. Bertaccini A, Duduk B (2009) Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr 48(3):355–378

    CAS  Google Scholar 

  5. Lee IM, Gundersen-Rindal DE, Davis RE et al (2004) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 54(4):1037–1048

    Article  CAS  Google Scholar 

  6. Lee M, Martini M, Marcone C et al (2004) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. Int J Syst Evol Microbiol 54(2):337–347

    Article  CAS  Google Scholar 

  7. Marcone C, Lee IM, Davis RE et al (2000) Classification of aster yellowsgroup phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int J Syst Evol Microbiol 50(5):1703–1713

    Article  CAS  Google Scholar 

  8. Zhao Y, Davis RE (2016) Criteria for phytoplasma 16Sr group/subgroup delineation and the need of a platform for proper registration of new groups and subgroups. Int J Syst Evol Microbiol 66(5):2121–2123

    Article  CAS  Google Scholar 

  9. Lee IM, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: Phytopathogenic Mollicutes 1. Annu Rev Microbiol 54(1):221–255

    Article  CAS  Google Scholar 

  10. Contaldo N, Bertaccini A, Paltrinieri S et al (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediterr 51(3):607–617

    CAS  Google Scholar 

  11. Marcone C, Neimark H, Ragozzino A et al (1999) Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89(9):805–810

    Article  CAS  Google Scholar 

  12. Hogenhout SA, Loria R (2008) Virulence mechanisms of gram-positive plant pathogenic bacteria. Curr Opin Plant Biol 11(4):449–456

    Article  CAS  Google Scholar 

  13. Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111

    Article  CAS  Google Scholar 

  14. Bosco D, Galetto L, Leoncini P et al (2007) Interrelationships between “Candidatus Phytoplasma asteris” and its leafhopper vectors (Homoptera: Cicadellidae). J Econ Entomol 100(5):1504–1511

    Article  CAS  Google Scholar 

  15. Christensen NM, Axelsen KB, Nicolaisen M et al (2005) Phytoplasmas and their interactions with hosts. Trends Plant Sci 10(11):526–535

    Article  CAS  Google Scholar 

  16. Oshima K, Ishii Y, Kakizawa S et al (2011) Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. PLoS One 6(8):e23242

    Article  CAS  Google Scholar 

  17. Schaper U, Seemüller E (1984) Recolonization of the stem of apple proliferation and pear decline-diseased trees by the causal organisms in spring. Z Pflanzenkrankh Pflanzenschutz 91:608–613

    Google Scholar 

  18. Marcone C, Weintraub PG, Jones P (2009) Movement of Phytoplasmas and the development of disease in the plant. In: Genomes, plant hosts and vectors, vol 114

    Google Scholar 

  19. Pagliari L, Buoso S, Santi S et al (2017) Filamentous sieve element proteins are able to limit phloem mass flow, but not phytoplasma spread. J Exp Bot 68(13):3673–3688

    Article  CAS  Google Scholar 

  20. Bertaccini A, Duduk B, Paltrinieri S et al (2014) Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am J Plant Sci 5:763–1788

    Article  Google Scholar 

  21. Valiunas V, Wang HZ, Li L et al (2015) A comparison of two cellular delivery mechanisms for small interfering RNA. Physiol Rep 3(2):e12286

    Article  Google Scholar 

  22. Seemüller E, Garnier M, Schneider B (2002) Mycoplasmas of plants and insects. In: Molecular biology and pathogenicity of mycoplasmas. Springer, New York, pp 91–115

    Chapter  Google Scholar 

  23. Osler R, Carraro L, Loi N et al (1996). Le più importanti malattie da fitoplasmi nel Friuli-Venezia Giulia: atlante. Edito da Ente regionale per la promozione e lo sviluppo dell'agricoltura del Friuli-Venezia Giulia

    Google Scholar 

  24. Musetti R, Buxa SV, De Marco F et al (2013) Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage. MPMI 26(4):379–386

    Article  CAS  Google Scholar 

  25. Musetti R, Favali MA (2003) Calcium localization and X-ray microanalysis in Catharanthus roseus L. infected with phytoplasmas. Micron 34:387–393

    Article  CAS  Google Scholar 

  26. Lherminier J, Benhamou N, Larrue J et al (2003) Cytological characterization of elicitin-induced protection in tobacco plants infected by Phytophthora parasitica or phytoplasma. Phytopathology 93(10):1308–1319

    Article  CAS  Google Scholar 

  27. Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22(3):541–563

    Article  CAS  Google Scholar 

  28. McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181(2):275–294

    Article  CAS  Google Scholar 

  29. van Bel AJ, Furch AC, Will T et al (2014) Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway. J Exp Bot 65:1761–1787

    Article  Google Scholar 

  30. Musetti R, Sanità di Toppi L, Martini M et al (2005) Hydrogen peroxide localization and antioxidant status in the recovery of apricot plants from European stone fruit yellows. Eur J Plant Pathol 112(1):53–61

    Article  CAS  Google Scholar 

  31. Sánchez-Rojo S, López-Delgado HA, Mora-Herrera ME et al (2011) Salicylic acid protects potato plants-from phytoplasma-associated stress and improves tuber photosynthate assimilation. Am J Pot Res 88(2):175–183

    Article  Google Scholar 

  32. Minato N, Himeno M, Hoshi A et al (2014) The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci Rep 4:1399

    Google Scholar 

  33. Punelli F, Al Hassan M, Fileccia V et al (2016) A microarray analysis highlights the role of tetrapyrrole pathways in grapevine responses to “stolbur” phytoplasma, phloem virus infections and recovered status. Physiol Mol Plant Path 93:129–137

    Article  CAS  Google Scholar 

  34. Zimmermann MR, Schneider B, Mithöfer A et al (2015) Implications of Candidatus Phytoplasma Mali infection on phloem function of apple trees. Endocytobiosis Cell Res 26:67–75

    Google Scholar 

  35. Ji X, Gai Y, Zheng C et al (2009) Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics 9(23):5328–5339

    Article  CAS  Google Scholar 

  36. Hren M, Nikolić P, Rotter A et al (2009) 'Bois noir'phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10(1):1

    Article  Google Scholar 

  37. Taheri F, Nematzadeh G, Zamharir MG et al (2011) Proteomic analysis of the Mexican lime tree response to “Candidatus Phytoplasma aurantifolia” infection. Mol BioSystems 7(11):3028–3035

    Article  CAS  Google Scholar 

  38. Bertamini M, Grando MS, Muthuchelian K et al (2002a) Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves. Physiol Mol Plant Path 61(6):349–356

    Article  CAS  Google Scholar 

  39. Bertamini M, Nedunchezhian N, Tomasi F et al (2002b) Phytoplasma [Stolbur-subgroup bois noir-BN] infection inhibits photosynthetic pigments, ribulose-1, 5-bisphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiol Mol Plant Path 61(6):357–366

    Article  CAS  Google Scholar 

  40. Junqueira A, Bedendo I, Pascholati S (2004) Biochemical changes in corn plants infected by the maize bushy stunt phytoplasma. Physiol Mol Plant Path 65(4):181–185

    Article  CAS  Google Scholar 

  41. Lepka P, Stitt M, Moll E et al (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol Mol Plant Path 55(1):59–68

    Article  CAS  Google Scholar 

  42. Zafari S, Niknam V, Musetti R et al (2012) Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia). Acta Physiol Plant 34(2):561–568

    Article  CAS  Google Scholar 

  43. Maust BE, Espadas F, Talavera C et al (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93(8):976–981

    Article  CAS  Google Scholar 

  44. Pagliari L, Martini M, Loschi A et al (2016) Looking inside phytoplasma-infected sieve elements: a combined microscopy approach using Arabidopsis thaliana as a model plant. Micron 89:87–97

    Article  CAS  Google Scholar 

  45. Bertamini M, Grando MS, Nedunchezhian N (2003) Effects of phytoplasma infection on pigments, chlorophyll-protein complex and photosynthetic activities in field grown apple leaves. Biol Plant 47(2):237–242

    Article  Google Scholar 

  46. Favali MA, Sanità di Toppi L, Vestena C et al (2001) Phytoplasmas associated with tomato stolbur disease. Acta Hortic 551:93–99

    Google Scholar 

  47. Margaria P, Palmano S (2011) Response of the Vitis vinifera L. cv. ‘Nebbiolo’ proteome to Flavescence dorée phytoplasma infection. Proteomics 11(2):212–224

    Article  Google Scholar 

  48. Santi S, Grisan S, Pierasco A et al (2013) Laser microdissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism. Plant Cell Environ 36(2):343–355

    Article  CAS  Google Scholar 

  49. Zhong BX, Shen YW (2004) Accumulation of pathogenesis-related Type-5 like proteins in Phytoplasma infected garland chrysanthemum Chrysanthemum coronarium. Acta Biochim Biophys Sin 36(11):773–779

    Article  CAS  Google Scholar 

  50. van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Path 55(2):85–97

    Article  Google Scholar 

  51. Boonrod K, Munteanu B, Jarausch B et al (2012) An immunodominant membrane protein (imp) of 'Candidatus Phytoplasma mali' binds to plant actin. Mol Plant-Microbe Interact 25(7):889–895

    Article  CAS  Google Scholar 

  52. Galetto L, Bosco D, Balestrini R et al (2011) The major antigenic membrane protein of “Candidatus Phytoplasma asteris” selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS One 6(7):e22571

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Musetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pagliari, L., Musetti, R. (2019). Phytoplasmas: An Introduction. In: Musetti, R., Pagliari, L. (eds) Phytoplasmas. Methods in Molecular Biology, vol 1875. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8837-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8837-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8836-5

  • Online ISBN: 978-1-4939-8837-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics