Skip to main content
Log in

Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The objective of the present work was to study biochemical alterations in lime plants infected by the Candidatus Phytoplasma aurantifoliae. Changes in antioxidant activities, content of chlorophylls (Chl), carotenoids (Car), soluble proteins, sugars and auxin (IAA) in infected plant were investigated. The activities of polyphenol oxidase (PPO), peroxidase (POX) and superoxide dismutase (SOD) were observed to be greater in infected leaves than the healthy control. Also according to non-denaturing PAGE, in infected leaves all the antioxidative enzymes isoforms were stronger than that of the healthy control. These results suggest that antioxidant enzymes can be activated in response to infection by phytoplasma. The decrease in content of proteins, total soluble and reducing sugars in infected plants point out changes in host metabolism due to the phytoplasma infection. The reduction in chlorophylls and auxin content shows that the phytoplasma can interfere in photosynthesis and induces senescence in the leaf. In conclusion, this study provides new insights into the lime response to phytoplasma infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Car:

Carotenoid

CAT:

Catalase

Chl:

Chlorophyll

EDTA:

Ethylene diamine tetra acetic acid

l-DOPA:

l-3,4-dihydroxyphenylalanine

NBT:

Nitroblue tetrazolium

POX:

Peroxidase

ROS:

Reactive oxygen species

SDS-PAGE:

Sodium dodecylsulphate-5 polyacrylamide gel electrophoresis

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Abeles FB, Biles CL (1991) Characterization of peroxidase in lignifying peach fruit endocarp. Plant Physiol 95:269–273

    Article  PubMed  CAS  Google Scholar 

  • Amor NB, Hamed KB, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Anal Biochem 44:276–278

    Article  PubMed  CAS  Google Scholar 

  • Bertamini M, Nedunchezhian N (2001) Effects of phytoplasma [stolbur-subgroup (Boin oir-BN)] on photosynthetic pigments, saccharides, ribulose 1, 5-biophosphate carboxylase, nitrate and nitrite reductases, and photosynthetic activities in field grown grapevine (vitis vinifera L. cv. Chardonnay) leaves. Photosynthetica 39:119–122

    Article  CAS  Google Scholar 

  • Bertamini M, Grando MS, Muthuchelian K, Nedunchezhian N (2002a) Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves. Physiol Mol Plant Pathol 61:349–356

    Article  CAS  Google Scholar 

  • Bertamini M, Nedunchezhian N, Tomasi F, Grando S (2002b) Phytoplasma [Stolbur subgroup (Bois Noir-BN)] infection inhibits photosynthetic pigments, ribulose-1, 5-biphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiol Mol Plant Pathol 61:357–366

    Article  CAS  Google Scholar 

  • Bertamini M, Grando MS, Nedunchezhian N (2003/4) Effects of phytoplasma infection on pigments, chlorophyll-protein complex and photosynthetic activities in field grown apple leaves. Biol Plant 47:237–242

    Google Scholar 

  • Borden S, Higgins VJ (2002) Hydrogen peroxide plays a critical role in the defense response of tomato to Cladoporicem fidvum. Physiol Mol Plant Pathol 61:227–236

    Article  CAS  Google Scholar 

  • Bové JM, Danet JL, Bananej K, Hassanzadeh N, Taghizadeh M, Salehi M, Garnier M (2000) Witches’ broom disease of lime in Iran. In: Proceedings of the fourteenth Conference of IOCV, Riverside, US, pp 207–212

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chang CJ (1977) Histological investigation on phyllody in Catharanthus roseus. M.S. thesis, University of Missouri

  • Chang CJ (1998) Pathogenicity of aster yellows phytoplasma and Spiroplasma citri on periwinkle. Phytopathology 88:1347–1350

    Article  PubMed  CAS  Google Scholar 

  • Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005) Phytoplasmas and their interactions with hosts. Trends Plant Sci 10(11):526–535

    Google Scholar 

  • Davis BJ (1964) Disc electrophoresis. ΙΙ. Method and application to human serum proteins. Ann New York Acad Sci USA 121:404–427

    Article  CAS  Google Scholar 

  • Davis RE (1995) Fitoplasmas: fitopatógenos procarióticos sem parede celular, habitantes de floema e transmitidos por artrópodes. Revisão Anual de Patologia de Plantas 3:1–27

    Google Scholar 

  • Davis RE, Sinclair WA (1998) Phytoplasma identity and disease etiology. Phytopathology 88:1372–1376

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Biochem 28:350–356

    CAS  Google Scholar 

  • Eichelmann H, Laisk A (1999) Ribulose-1, 5-bisphosphate carboxylase/oxygenase content, assimilatory charge, and mesophyll conductance in leaves. Plant Physiol 119:179–189

    Article  PubMed  CAS  Google Scholar 

  • Favali MA, di Toppi LS, Vestena C, Fossati F, Musetti R (2001) Phytoplasmas associated with tomato stolbur disease. Acta Hortic 551:93–99

    CAS  Google Scholar 

  • Friedrich JW, Huffaker RC (1980) Photosynthesis, leaf resistances, and ribulose-1, 5-bisphosphate carboxylase degradation in senescing barley leaves. Plant Physiol 65:1103–1107

    Article  PubMed  CAS  Google Scholar 

  • Garnier M, Zreik L, Bové JM (1991) Witches’ broom, a lethal mycoplasmal disease of lime in the Sultanate of Oman and the United Arab Emirates. Plant Dis 75:546–555

    Article  Google Scholar 

  • Gaspar T, Penel C, Thorpe T, Greppin H (1982) Peroxidases 1970–1980: a survey of their biochemical and physiological roles in higher plants. University of Geneva Press, Geneva

    Google Scholar 

  • Ghosh DK, Das AK, Singh S, Singh SJ, Ahlawat YA (1999) Occurrence of witches’ broom, a new phytoplasma disease of acid lime (Citrus aurantifolia) in India. Plant Dis 83:302

    Article  Google Scholar 

  • Guthrie JN, Walsh KB, Scott PT, Rasmussen TS (2001) The phytopathology of Australian papaya dieback: a proposed role for the phytoplasma. Physiol Mol Plant Pathol 58:23–30

    Article  Google Scholar 

  • Ji XL, Gai YP, Zheng CC, Mu Z (2009) Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics 9:5328–5339

    Article  PubMed  CAS  Google Scholar 

  • Junqueira A, Bedendo I, Pascholati S (2004) Biochemical changes in corn plants infected by the maize bushy stunt phytoplasma. Physiol Mol Plant Pathol 65:181–185

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–765

    Article  PubMed  CAS  Google Scholar 

  • Lee IM, Hammond RW, Davis RE, Gundersen DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma like organisms. Phytopathology 83:834–842

    Article  CAS  Google Scholar 

  • Lepka P, Stitt M, Moll E, Seemuller E (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol Mol Plant Pathol 55:59–68

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol. 2. Academic Press, New York

    Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophyll a and b of leaf extract in different solvents. Biochem Soc Trans 11(3):591–602

    CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Cell wall peroxidase activity, hydrogen peroxide level and NaCl-inhibited root growth of rice seedlings. Plant Soil 230:135–143

    Article  CAS  Google Scholar 

  • Malik CP, Singh MB (1980) Plant enzymology and histoenzymology. Kalyani Publishers, New Delhi, pp 51–53

    Google Scholar 

  • Maust BE, Espadas F, Talavera C, Aguilar M, Santamaría JM, Oropeza C (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93:976–998

    Article  PubMed  CAS  Google Scholar 

  • McCoy RE, Caudwell A, Chang CJ, Chen TA, Chiykowski LN, Cousin MT, Dale JL, de Leeuw GTN, Golino DA, Hackett KJ, Kirkpatrick BC, Marwitz R, Petzold H, Sinha RH, Sugiura M, Whitcomb RF, Yang IL, Zhu BM, Seemüller E (1989) Plant diseases associated with mycoplasm alike organisms. In: Whitcomb RF, Tully JG (eds) The mycoplasmas, vol 5. Academic Press, New York, pp 545–560

  • Munns R, Rebetzke GJ, Husain S, James RA, Hare RA (2003) Genetic control of sodium extrusion in durum wheat. Austra J Agr Res 54:627–635

    Article  CAS  Google Scholar 

  • Musetti R (2009) Biochemical changes in plants infected by phytoplasmas. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CABI Publishing, Wallingford, pp 135–149

    Google Scholar 

  • Musetti R, Marabottini R, Badiani M, Martini M, di Toppi LS, Borselli S, Borgo M, Osler R (2007) On the role of H2O2 in the recovery of grapevine (Vitis vinifra cv. Prosecco) from Flavescence doree disease. Funct Plant Biol 34:750–758

    Article  CAS  Google Scholar 

  • Nelson NA (1944) Photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Niknam V, Bagherzadeh M, Ebrahimzadeh H, Sokhansanj A (2004) Effect of NaCl on biomass and content of sugars, proline and proteins in seedlings and leaf explants of Nicotiana tabacum grown in vitro. Biol Plant 48:613–615

    Article  CAS  Google Scholar 

  • Oliveira E, Magalhães PC, Gomide RL, Vasconcelos CA, Souza IRP, Oliveira CM, Cruz I, Schaffert RE (2002) Growth and nutrition of mollicute infected maize. Plant Dis 86:945–949

    Article  Google Scholar 

  • Ray H, Douches DS, Hammerschmidt R (1998) Transformation of potato with cucumber peroxidase: expression and disease response. Physiol Mol Plant Pathol 53:93–103

    Article  CAS  Google Scholar 

  • Raymond J, Pakariyathan N, Azanza JL (1993) Purification and some properties of polyphenol oxidases from sunflowers seed. Phytochemistry 34:927–931

    Article  CAS  Google Scholar 

  • Seemüller E, Marcone C, Laue U, Ragozzino A, Göschl M (1998) Current status of molecular classification of the phytoplasmas. J Plant Pathol 80:3–26

    Google Scholar 

  • Stobart AK, Griffiths WH, Ameen-Bukhari I, Sherwood RP (1985) The effect of cadmium on the biosynthesis of leaves of barley. Physiol Plant 63:293–298

    Article  CAS  Google Scholar 

  • Torres E, Botti S, Paltrinieri S, Martin MP, Bertaccini A (2003) Caracterizacio′ n molecular de los fitoplasmas del grupo Apple proliferation asociados a los sı′ntomas de escoba de bruja en Retama. Bol San Veg Plagas 29:265–275

    Google Scholar 

  • Torres MA, Jonathan DG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogen. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC (1971) Tobacco polyphenol oxidase. A specific staining method indicating non-identify with peroxidase. Phytochemistry 10:503–507

    Article  Google Scholar 

  • Wendel JF, Weeden NF (1989) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozyme in plant biology. Chapman and Hall, London, pp 5–45

    Chapter  Google Scholar 

  • Yu F (1997) Pigment content and in vitro culture of periwinkle infected with aster yellows phytoplasma or Spiroplasma citri. MS thesis, University of Georgia, Griffin

Download references

Acknowledgments

The financial support of this research was provided partly by a grant-in-aid for research projects from the Engineering Research Institute, Ministry of Agricultural Jahad. The authors also acknowledge the financial support of the College of Sciences, University of Tehran. We are also grateful to the Engineering Research Institute for providing the lime plants infected by ‘Candidatus Phytoplasma aurantifoliae’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Niknam.

Additional information

Communicated by B. Barna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zafari, S., Niknam, V., Musetti, R. et al. Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia). Acta Physiol Plant 34, 561–568 (2012). https://doi.org/10.1007/s11738-011-0855-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-011-0855-0

Keywords

Navigation