Skip to main content

Methods for Enrichment and Sequencing of Oral Viral Assemblages: Saliva, Oral Mucosa, and Dental Plaque Viromes

  • Protocol
  • First Online:
The Human Virome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1838))

Abstract

The oral cavity is a major portal of entry for human pathogens including viruses. However, metagenomics has revealed that highly personalized and time-persistent bacteriophage assemblages dominate this habitat. Most oral bacteriophages follow lysogenic life cycles, deploying complex strategies to manage bacterial homeostasis. Although bacterial dysbiosis underlies common oral pathologies such as caries and periodontitis, the cause of these bacteria replacements remains obscure, and it is theorized that bacteriophages play an important role. The enormous sensitivity of metagenomics coupled with next-generation sequencing has made technically feasible to address the putative role of bacteriophages in oral dysbiosis and represents a valuable tool to discover new human viruses.

This chapter proposes a workflow that consists of a simple viral enrichment protocol, two alternative random amplification methods, and next-generation sequencing to access virome composition in three oral environments: supragingival plaque, saliva, and mucosa. These protocols circumvent some well-known sources of bias, providing genomic information about DNA and RNA viral communities with minimal contamination from human and bacterial sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dewhirst FE, Chen T, Izard J et al (2010) The human oral microbiome. J Bacteriol 192(19):5002–5017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matarazzo F, Ribeiro AC, Feres M et al (2011) Diversity and quantitative analysis of Archaea in aggressive periodontitis and periodontally healthy subjects. J Clin Periodontol 38(7):621–627

    Article  PubMed  Google Scholar 

  3. Belda-ferre P, Alcaraz LD, Pignatelli M et al (2012) The oral metagenome in health and disease. ISME J 6(1):46–56

    Article  CAS  PubMed  Google Scholar 

  4. Ghannoum MA, Jurevic RJ, Mukherjee PK et al (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6(1):e1000713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pride DT, Salzman J, Haynes M et al (2012) Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J 6(5):915–926

    Article  CAS  PubMed  Google Scholar 

  6. Camelo-Castillo AJ, Mira A, Pico A et al (2015) Subgingival microbiota in health compared to periodontitis and the influence of smoking. Front Microbiol 6:1–12

    Article  Google Scholar 

  7. Wade WG (2013) The oral microbiome in health and disease. Pharm Res 69(1):137–143

    Article  CAS  Google Scholar 

  8. Proctor DM, Relman DA (2017) The landscape ecology and microbiota of the human nose, mouth, and throat. Cell Host Microbe 21(4):421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Edlund A, Santiago-Rodriguez TM, Boehm TK et al (2015) Bacteriophage and their potential roles in the human oral cavity. J Oral Microbiol 7:27423

    Article  CAS  PubMed  Google Scholar 

  10. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Willner D, Furla M, Schmieder R et al (2011) Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc Nat Acad Sci 108:4547–4553

    Article  PubMed  Google Scholar 

  12. Abeles SR, Robles-Sikisaka R, Ly M et al (2014) Human oral viruses are personal, persistent and gender-consistent. ISME J 8(9):1753–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ly M, Jones MB, Abeles SR et al (2016) Transmission of viruses via our microbiomes. Microbiome 4(1):64

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wylie KM, Mihindukulasuriya K, Zhou Y et al (2014) Metagenomic analysis of double-stranded DNA viruses in healthy adults. BMC Biol 12:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parras-Moltó M, Suárez-Rodríguez P, Eguia A et al (2014) Genome sequence of two novel species of torque Teno Minivirus from the human oral cavity. Genome Announc 2(5):5–6

    Article  Google Scholar 

  16. Corstjens PLAM, Abrams WR, Malamud D (2016) Saliva and viral infections. Periodontol 2000 70(1):93–110

    Article  PubMed  Google Scholar 

  17. Stern A, Mick E, Tirosh I et al (2012) CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res 22(10):1985–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manrique P, Bolduc B, Walk ST et al (2016) Healthy human gut phageome. Proc Nat Acad Sci 113(37):10400–10405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robles-Sikisaka R, Ly M, Boehm T et al (2013) Association between living environment and human oral viral ecology. ISME J 7(9):1710–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abeles SR, Ly M, Santiago-Rodriguez TM et al (2015) Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS One 10(8):1–18

    Article  CAS  Google Scholar 

  21. Simón-Soro A, Mira A (2015) Solving the etiology of dental caries. Trends Microbiol 23(2):76–82

    Article  CAS  PubMed  Google Scholar 

  22. Nath SG, Raveendran R (2013) Microbial dysbiosis in periodontitis. J Indian Soc of Periodontol 17(4):543–545

    Article  Google Scholar 

  23. Hu X, Zhang Q, Hua H et al (2016) Changes in the salivary microbiota of oral leukoplakia and oral cancer. Oral Oncol 56:e6–e8

    Article  PubMed  Google Scholar 

  24. Ly M, Abeles SR, Boehm TK (2014) Altered oral viral ecology in association with periodontal disease. MBio 5(3):1–13

    Article  CAS  Google Scholar 

  25. Colson P, Emergents V, Emergence UMR et al (2013) “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol 158(12):2517–2521

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hoyles L, McCartney AL, Neve H et al (2014) Characterization of virus-like particles associated with the human faecal and caecal microbiota. Res Microbiol 165(10):803–812

    Article  CAS  PubMed  Google Scholar 

  27. Kleiner M, Hooper LV, Duerkop BA (2015) Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genomics 16:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Castro-Mejía JL, Muhammed MK, Kot W et al (2015) Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome 3(1):64

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thurber RV, Haynes M, Breitbart M et al (2009) Laboratory procedures to generate viral metagenomes. Nat Protoc 4(4):470–483

    Article  CAS  PubMed  Google Scholar 

  30. Steward GF, Culley AI, Mueller JA et al (2013) Are we missing half of the viruses in the ocean? ISME J 7(3):672–679

    Article  CAS  PubMed  Google Scholar 

  31. Kim KH, Bae JW (2011) Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Appl Environ Microbiol 77(21):7663–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arriola E, Lambros MBK, Jones C et al (2007) Evaluation of Phi29-based whole-genome amplification for microarray-based comparative genomic hybridisation. Lab Investig 87(1):75–83

    Article  CAS  PubMed  Google Scholar 

  33. Yilmaz S, Allgaier M, Hugenholtz P (2010) Multiple displacement amplification compromises quantitative analysis of metagenomes. Nat Methods 7(12):943–944

    Article  CAS  PubMed  Google Scholar 

  34. Bredel M, Bredel C, Juric D et al (2005) Amplification of whole tumor genomes and gene-by-gene mapping of genomic aberrations from limited sources of fresh-frozen and paraffin-embedded DNA. J Mol Diagn 7(2):171–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rhee M, Light YK, Meagher RJ et al (2016) Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples. PLoS One 11(5):e0153699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Protocols CSH (2006) Protocols, Cold Spring Harbor. Cold Spring Harbor Protocols

    Google Scholar 

  37. Methé B, Nelson KE, Pop M et al (2012) A framework for human microbiome research. Nature 486(7402):215–221

    Article  CAS  PubMed Central  Google Scholar 

  38. Picher ÁJ, Budeus B, Wafzig O et al (2016) TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol. Nat Commun 7:13296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Direito SOL, Zaura E, Little M et al (2014) Systematic evaluation of bias in microbial community profiles induced by whole genome amplification. Environ Microbiol 16(3):643–657

    Article  CAS  PubMed  Google Scholar 

  40. Victoria JG, Kapoor A, Dupuis K et al (2008) Rapid identification of known and new RNA viruses from animal tissues. PLoS Pathog 4(9):e1000163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Djikeng A, Halpin R, Kuzmickas R et al (2008) Viral genome sequencing by random priming methods. BMC Genomics 9:1–9

    Article  CAS  Google Scholar 

  42. Culley AI, Suttle CA, Steward GF (2010) Characterization of the diversity of marine RNA viruses. Man Aquat Vir Ecol:193–201

    Google Scholar 

  43. López-Bueno A, Rastrojo A, Peiró R et al (2015) Ecological connectivity shapes quasispecies structure of RNA viruses in an Antarctic lake. Mol Ecol 24(19):4812–4825

    Article  CAS  PubMed  Google Scholar 

  44. Rosseel T, Van Borm S, Vandenbussche F et al (2013) The origin of biased sequence depth in sequence-independent nucleic acid amplification and optimization for efficient massive parallel sequencing. PLoS One 8(9):1–9

    Article  CAS  Google Scholar 

  45. Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of ion torrent, Pacific biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ari AM (2016) Next-generation sequencing: advantages, disadvantages, and future. In: Hakeem KR, Tombuloğuglu H, Tombuloğuglu G (eds) Plant Omics: trends and applications. Springer International Publishing, New York., Champp, pp 109–135

    Chapter  Google Scholar 

  47. Solonenko S, Ignacio-Espinoza JC, Alberti A et al (2013) Sequencing platform and library preparation choices impact viral metagenomes. BMC Genomics 14:320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bartram AK, Poon C, Neufeld JD (2009) Nucleic acid contamination of glycogen used in nucleic acid precipitation and assessment of linear polyacryl amide as an alternative co-precipitant. BioTechniques 47(6):1019–1022

    Article  CAS  PubMed  Google Scholar 

  49. Willner D, Furlan M, Haynes M et al (2009) Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS One 4(10):1–12

    Article  CAS  Google Scholar 

  50. Klingeborn B, Dinter Z (1972) Equine abortion (herpes) virus: strain differences in susceptibility to inactivation by dithiothreitol. Appl Microbiol 23(6):1121–1124

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Lopez-Bueno A, Tamames J, Velazquez D et al (2009) High diversity of the viral community from an Antarctic Lake. Science 326(5954):858–861

    Article  CAS  PubMed  Google Scholar 

  52. Wei Lim Y, Haynes M, Furlan M et al (2014) Purifying the impure: sequencing Metagenomes and Metatranscriptomes from complex animal-associated samples video link. J Vis Exp 94:1–15

    Google Scholar 

  53. Simón-Soro Á, Tomás I, Cabrera-Rubio R et al (2013) Microbial geography of the oral cavity. J Dent Res 92(7):616–621

    Article  PubMed  Google Scholar 

  54. Bergallo M, Costa C, Gribaudo G et al (2006) Evaluation of six methods for extraction and purification of viral DNA from urine and serum samples. New Microbiol 29(2):111–119

    PubMed  CAS  Google Scholar 

  55. Lombardi VC, Ruscetti FW, Das Gupta J et al (2009) Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science 326:585–589

    Article  CAS  PubMed  Google Scholar 

  56. Naccache SN, Greninger AL, Lee D et al (2013) The perils of pathogen discovery: origin of a novel parvovirus-like hybrid genome traced to nucleic acid extraction spin columns. J Virol 87(22):11966–11977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Breitbart M, Salamon P, Andresen B et al (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A 99(22):14250–14255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roux S, Solonenko NE, Dang VT et al (2016) Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ 4:e2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Duhaime MB, Deng L, Poulos BT et al (2012) Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol 14(9):2526–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu L, Wen C, Qin Y et al (2015) Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol 15(125):1–12

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness through grant SAF2012-38421 and a “Formación de Personal Investigador” Ph.D. studentship to M. P-M.

We acknowledge Patricia Suárez Rodríguez and Ana Rodríguez Galet for technical support and Áurea Soro-Simón, Alex Mira, Asier Eguía and José Manuel Aguirre-Urizar for providing valuable samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto López-Bueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Parras-Moltó, M., López-Bueno, A. (2018). Methods for Enrichment and Sequencing of Oral Viral Assemblages: Saliva, Oral Mucosa, and Dental Plaque Viromes. In: Moya, A., Pérez Brocal, V. (eds) The Human Virome. Methods in Molecular Biology, vol 1838. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8682-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8682-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8681-1

  • Online ISBN: 978-1-4939-8682-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics