Skip to main content

Use of Glucose–Fructose to Enhance the Exon Skipping Efficacy

  • Protocol
  • First Online:
Exon Skipping and Inclusion Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Exon-skipping antisense oligonucleotides (AOs) are promising treatments for muscle-related genetic ailments including Duchenne muscular dystrophy (DMD), but clinical translation is unfortunately hampered by insufficient systemic delivery. Here we describe that how one can employ a glucose–fructose injection mixture to improve muscle uptake and functional outcomes of DMD AOs in energy-deficient peripheral muscles of mdx mice. The potentiating effect of glucose–fructose on AOs in energy-deficient muscles offers a simple and economical method for enhancing AO potency, reducing screening costs for researchers and accelerating the translation of nucleic acid-based therapeutics in DMD and other muscular dystrophies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aartsma-Rus A, Fokkema I, Verschuuren J et al (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30:293–299

    Article  Google Scholar 

  2. Lu QL, Mann CJ, Lou F et al (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9:1009–1014

    Article  CAS  Google Scholar 

  3. Lu QL, Rabinowitz A, Chen YC et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102:198–203

    Article  CAS  Google Scholar 

  4. Yin H, Lu Q, Wood M (2008) Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol Ther 16:38–45

    Article  CAS  Google Scholar 

  5. Pires VB, Simoes R, Mamchaoui K et al (2017) Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne muscular dystrophy myotubes. PLoS One 12:e0181065

    Article  Google Scholar 

  6. Yang L, Niu H, Gao X et al (2013) Effective exon skipping and dystrophin restoration by 2′-o-methoxyethyl antisense oligonucleotide in dystrophin-deficient mice. PLoS One 8:e61584

    Article  CAS  Google Scholar 

  7. Dowling JJ (2016) Eteplirsen therapy for Duchenne muscular dystrophy: skipping to the front of the line. Nat Rev Neurol 12:675–676

    Article  CAS  Google Scholar 

  8. Goemans NM, Tulinius M, van den Akker JT et al (2011) Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med 364:1513–1522

    Article  CAS  Google Scholar 

  9. Cirak S, Arechavala-Gomeza V, Guglieri M et al (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605

    Article  CAS  Google Scholar 

  10. Williams JH, Schray RC, Sirsi SR et al (2008) Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice. BMC Biotechnol 8:35

    Article  Google Scholar 

  11. Sirsi SR, Schray RC, Wheatley MA et al (2009) Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides. J Nanobiotechnol 7:1

    Article  Google Scholar 

  12. Kim Y, Tewari M, Pajerowski JD et al (2009) Polymersome delivery of siRNA and antisense oligonucleotides. J Control Release 134:132–140

    Article  CAS  Google Scholar 

  13. Rimessi P, Sabatelli P, Fabris M et al (2009) Cationic PMMA nanoparticles bind and deliver antisense oligoribonucleotides allowing restoration of dystrophin expression in the mdx mouse. Mol Ther 17:820–827

    Article  CAS  Google Scholar 

  14. Ferlini A, Sabatelli P, Fabris M et al (2010) Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP-AON complexes. Gene Ther 17:432–438

    Article  CAS  Google Scholar 

  15. Bassi E, Falzarano S, Fabris M et al (2012) Persistent dystrophin protein restoration 90 days after a course of intraperitoneally administered naked 2'OMePS AON and ZM2 NP-AON complexes in mdx mice. J Biomed Biotechnol 2012:897076

    Article  Google Scholar 

  16. Falzarano MS, Passarelli C, Bassi E et al (2013) Biodistribution and molecular studies on orally administered nanoparticle-AON complexes encapsulated with alginate aiming at inducing dystrophin rescue in mdx mice. Biomed Res Int 2013:527418

    Article  Google Scholar 

  17. Said Hassane F, Saleh AF, Abes R et al (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67:715–726

    Article  CAS  Google Scholar 

  18. Yin H, Moulton HM, Seow Y et al (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17:3909–3918

    Article  CAS  Google Scholar 

  19. Yin H, Moulton HM, Betts C et al (2009) A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet 18:4405–4414

    Article  CAS  Google Scholar 

  20. Yin H, Moulton HM, Betts C et al (2010) Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO. Mol Ther 18:1822–1829

    Article  CAS  Google Scholar 

  21. Hammond SM, Hazell G, Shabanpoor F et al (2016) Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A 113:10962–10967

    Article  CAS  Google Scholar 

  22. Yin H, Saleh AF, Betts C et al (2011) Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol Ther 19:1295–1303

    Article  CAS  Google Scholar 

  23. Betts C, Saleh AF, Arzumanov AA et al (2012) Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol Ther Nucleic Acids 1:e38

    Article  Google Scholar 

  24. Han G, Gu B, Cao L et al (2016) Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice. Nat Commun 7:10981

    Article  CAS  Google Scholar 

  25. Cao L, Han G, Lin C et al (2016) Fructose promotes uptake and activity of oligonucleotides with different chemistries in a context-dependent manner in mdx mice. Mol Ther Nucleic Acids 5:e329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifang Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Han, G., Gao, X., Yin, H. (2018). Use of Glucose–Fructose to Enhance the Exon Skipping Efficacy. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics