Measuring Antibody-Antigen Binding Kinetics Using Surface Plasmon Resonance

  • Stephen Hearty
  • Paul Leonard
  • Hui Ma
  • Richard O’KennedyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1827)


Surface plasmon resonance (SPR) is now widely embraced as a technology for monitoring a diverse range of protein-protein interactions and is considered almost de rigueur for characterizing antibody-antigen interactions. The technique obviates the need to label either of the interacting species, and the binding event is visualized in real time. Thus, it is ideally suited for screening crude, unpurified antibody samples that dominate early candidate panels following antibody selection campaigns. SPR returns not only concentration and affinity data but when used correctly can resolve the discrete component kinetic parameters (association and dissociation rate constants) of the affinity interaction. Herein, we outline some SPR-based generic antibody screening configurations and methodologies in the context of expediting data-rich ranking of candidate antibody panels and ensuring that antibodies with the optimal kinetic binding characteristics are reliably identified.

Key words

Surface plasmon resonance (SPR) Antibody Affinity Antigen Association rate Dissociation rate Screening 



The authors gratefully acknowledge the technical contributions from C. J. Hayes, P. J. Conroy, and B. Vijayalakshmi Ayyar. This material is based on work supported by the Science Foundation Ireland (grants 10/CE/B1821 and 14/IA/2646) and Enterprise Ireland (grant CF/2015/0105).


  1. 1.
    Hearty S, O’Kennedy R (2011) Exploiting recombinant antibodies in point-of-care (POC) diagnostics: the combinatorial advantage. Bioeng Bugs 2(3):1–5CrossRefGoogle Scholar
  2. 2.
    Foote J, Eisen HN (1995) Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci 92(5):1254–1256CrossRefPubMedGoogle Scholar
  3. 3.
    Batista FD, Neuberger MS (2000) B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J 19:513–520CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rader C (1997) Barbas III CF phage display of combinatorial antibody libraries. Curr Opin Biotechnol 8(4):503–508CrossRefPubMedGoogle Scholar
  5. 5.
    Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci 97(20):10701–10705CrossRefPubMedGoogle Scholar
  6. 6.
    Steckbeck JD, Orlov I, Chow C, Grieser H, Miller K, Bruno J, Robinson JE, Montelaro RC, Cole KS (2005) Kinetic rates of antibody binding correlate with neutralization sensitivity of variant simian immunodeficiency virus strains. J Virology 79(19):12311–12320CrossRefPubMedGoogle Scholar
  7. 7.
    Hearty S, Conroy PJ, Vijayalakshmi Ayyar B, Byrne B, O’Kennedy R (2010) Surface plasmon resonance for vaccine design and efficacy studies: recent applications and future trends. Exp Rev Vaccines 9(6):645–664CrossRefGoogle Scholar
  8. 8.
    Ma H, O’Kennedy R (2016) Generation and optimisation of antibodies for biosensor applications. Institution of Engineering and Technology (IET) press.:209–230Google Scholar
  9. 9.
    Nagata K, Handa H (2000) Real-time analysis of biomolecular interactions. Springer-Verlag, Tokyo, pp 26–27CrossRefGoogle Scholar
  10. 10.
    SPR-pages (2017) SPR Instruments.
  11. 11.
    Leonard P, Hayes CJ, O’Kennedy R (2011) Rapid temperature-dependent antibody ranking using Biacore A100. Anal Biochem 409(2):290–292CrossRefPubMedGoogle Scholar
  12. 12.
    Conroy PJ, O’Kennedy RJ, Hearty S (2012) Cardiac troponin I: a case study in rational antibody design for human diagnostics. Protein Eng Des Sel 25(6):295–305CrossRefPubMedGoogle Scholar
  13. 13.
    Säfsten P (2009) Epitope mapping by surface plasmon resonance. Methods Mol Biol 524:67–76CrossRefPubMedGoogle Scholar
  14. 14.
    Pola E, Roosa H, Markeya F, Elwingera F, Shawb A, Karlssona R (2016) Evaluation of calibration-free concentration analysis provided by Biacore™ systems. Anal Biochem 510:88–97CrossRefGoogle Scholar
  15. 15.
    Etayash H, Jiang K, Azmi S, Thundat T, Kaura K (2015) Real-time detection of breast cancer cells using peptide-functionalized microcantilever arrays. Sci Rep 5:13967CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kari OK, Rojalin T, Salmaso S, Barattin M, Jarva H, Meri S, Yliperttula M, Viitala T, Urtti A (2017) Multi-parametric surface plasmon resonance platform for studying liposome-serum interactions and protein corona formation. Drug Deliv Transl Res 7(2):228–240CrossRefPubMedGoogle Scholar
  17. 17.
    Liu P, Viitala T, Kartal-Hodzic A, Liang H, Laaksonen T, Hirvonen J, Peltonen L (2015) Interaction studies between indomethacin nanocrystals and PEO/PPO copolymer stabilizers. Pharm Res 32(2):628–639CrossRefPubMedGoogle Scholar
  18. 18.
    Rezabakhsh A, Nabat E, Yousefi M, Montazersaheb S, Cheraghi O, Mehdizadeh A, Fathi F, Movassaghpour AA, Maleki-Dizaji N, Rahbarghazi R, Garjani A (2017) Endothelial cells' biophysical, biochemical, and chromosomal aberrancies in high-glucose condition within the diabetic range. Cell Biochem Funct 35(2):83–97CrossRefPubMedGoogle Scholar
  19. 19.
    Yordanov G, Gemeiner P, Katrlík J (2016) Study of interactions between blood plasma proteins and poly(butyl cyanoacrylate) drug nanocarriers by surface plasmon resonance. Colloids Surf A Physicochem Eng Asp 510:309–316CrossRefGoogle Scholar
  20. 20.
    Choi YS, Moon JH, Kim TG, Lee JY (2016) Potent in vitro and in vivo activity of p antibody specific for Porphyromonas gingivalis fimA. Clin Vaccine Immunol 23(4):346–352CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wen X, Pickens J, Mousa JJ, Leser GP, Lamb RA, Crowe JE Jr, Jardetzky TS (2016) A chimeric pneumovirus fusion protein carrying neutralizing epitopes of both MPV and RSV. PLoS One 11(5):e0155917Google Scholar
  22. 22.
    Gupta S, Hirota M, Waugh SM, Murakami I, Suzuki T, Muraguchi M, Shibamori M, Ishikawa Y, Jarvis TC, Carter JD, Zhang C, Gawande B, Vrkljan M, Janjic N, Schneider DJ. (2014) Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J Biol Chem 289(12):8706-8719Google Scholar
  23. 23.
    Chardin H, Mercier K, Frydman C, Vollmer N (2014) Surface Plasmon resonance imaging: a method to measure the affinity of the antibodies in allergy diagnosis. J Immunol Methods 405:23–28CrossRefPubMedGoogle Scholar
  24. 24.
    Zeidan E, Shivaji R, Henrich CV, Sandrosa GM (2016) Nano-SPRi aptasensor for the detection of progesterone in buffer. Sci Rep 6:26714CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Aydin H, Sultana A, Li S, Thavalingam A, Lee EJ (2016) Molecular architecture of the human sperm IZUMO1 and egg JUNO fertilization complex. Nature 534:562–565CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu C, Balsamo V, Sun D, Naja M, Wang X, Rosen B, Li CZ (2012) A 3D localized surface plasmon resonance biosensor for the study of trivalent arsenic binding to the ArsA ATPase. Biosens Bioelectron 38(1):19–26CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zagorodko O, Bouckaert J, Dumych T, Bilyy R, Larroulet I, Serrano AY, Dorta DA, Gouin SG, Dima SO, Oancea F, Boukherroub R, Szunerits S (2015) Surface plasmon resonance (SPR) for the evaluation of shear-force-dependent bacterial adhesion. Biosensors 5(2):276–287CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schmidt TP, Perna AM, Fugmann T, Böhm M, Hiss J, Haller S, Götz C, Tegtmeyer N, Hoy B, Rau TT, Neri D, Backert S, Schneider G, Wesslerb S (2016) Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA. Sci Rep 6:23264CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gebert LFR, Rebhan MAE, Crivelli SEM, Denzler R, Stoffe M, Hall J (2014) Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res 42(1):609–621CrossRefPubMedGoogle Scholar
  30. 30.
    Affinite instruments (2017) Application Notes.
  31. 31.
    Baccara H, Mejria MB, Hafaiedha I, Ktaria T, Aounic M, Abdelghani A (2010) Surface plasmon resonance immunosensor for bacteria detection. Talanta 82(2):810–814CrossRefGoogle Scholar
  32. 32.
    Riskin M, Tel-Vered R, Willner I (2010) Imprinted au-nanoparticle composites for the ultrasensitive surface plasmon resonance detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Adv Mater 22:1387–1391CrossRefPubMedGoogle Scholar
  33. 33.
    Stojanović I, Schasfoort RB, Terstappen LW (2014) Analysis of cell surface antigens by surface Plasmon resonance imaging. Biosens Bioelectron 52:36–43CrossRefPubMedGoogle Scholar
  34. 34.
    Stojanović I, van der Velden TJ, Mulder HW, Schasfoort RB, Terstappen LW (2015) Quantification of antibody production of individual hybridoma cells by surface plasmon resonance imaging. Anal Biochem 485:112–118CrossRefPubMedGoogle Scholar
  35. 35.
    McGurn LD, Moazami-Goudarzi M, White SA, Suwal T, Brar B, Tang JQ, Espie GS, Kimber MS (2016) The structure, kinetics and interactions of the β-carboxysomal β-carbonic anhydrase. Biochem J 473(24):4559–4572CrossRefPubMedGoogle Scholar
  36. 36.
    Vachali P, Li B, Nelson K, Bernstein PS (2012) Surface plasmon resonance (SPR) studies on the interactions of carotenoids and their binding proteins. Arch Biochem Biophys 519(1):32–37CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yang X, Wang Z, Xiang Z, Li D, Hu Z, Cui W, Geng L, Fang Q (2017) Peptide probes derived from pertuzumab by molecular dynamics modeling for HER2-positive tumor imaging. PLoS Comput Biol 13(4):e1005441CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang W, Wu J, Zhang X, Hao C, Zhao X, Jiao G, Shan X, Tai W, Yua G (2017) Inhibition of influenza a virus infection by fucoidan targeting viral neuraminidase and cellular EGFR pathway. Sci Rep 7:40760CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Efimov GA, Kruglov AA, Khlopchatnikova ZV, Rozov FN, Mokhonov VV, Rose-John S, Scheller J, Gordon S, Stacey M, Drutskaya MS, Tillib SV, Nedospasov SA (2016) Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc Natl Acad Sci U S A 113(11):3006–3011CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bronner V, Denkberg G, Peled M, Elbaz Y, Zahavi E, Kasoto H, Reiter Y, Notcovich A, Bravman T (2010) Therapeutic antibodies: discovery and development using the ProteOn XPR36 biosensor interaction array system. Anal Biochem 406(2):147–156CrossRefPubMedGoogle Scholar
  41. 41.
    Cummins E, Luxenberg DP, McAleese F, Widom A, Fennell BJ, Darmanin-Sheehan A, Whitters MJ, Bloom L, Gill G, Cunningham O (2008) A simple high-throughput purification method for hit identification in protein screening. J Immunol Methods 339(1):38–46CrossRefPubMedGoogle Scholar
  42. 42.
    Cloutier SM, Couty S, Terskikh A, Marguerat L, Crivelli V, Pugnières M, Mani JC, Leisinger HJ, Mach JP, Deperthes D (2000) Streptabody, a high avidity molecule made by tetramerization of in vivo biotinylated, phage display-selected scFv fragments on streptavidin. Mol Immunol 37(17):1067–1077CrossRefPubMedGoogle Scholar
  43. 43.
    Canziani GA, Klakamp S, Myszka DG (2004) Kinetic screening of antibodies from crude hybridoma samples using Biacore. Anal 325(2):301–307Google Scholar
  44. 44.
    Karlsson R (1999) Affinity analysis of non-steady-state data obtained under mass transport limited conditions using Biacore technology. J Mol Recognit 12:285–292CrossRefPubMedGoogle Scholar
  45. 45.
    Ayyar BV, Hearty S, O’Kennedy R (2010) Highly sensitive recombinant antibodies capable of reliably differentiating heart-type fatty acid binding protein from noncardiac isoforms. Anal Biochem 407(2):165–171CrossRefPubMedGoogle Scholar
  46. 46.
    Leonard P, Säfsten P, Hearty S, McDonnell B, Finlay W, O’Kennedy R (2007) High throughput ranking of recombinant avian scFv antibody fragments from crude lysates using the Biacore A100. J Immunol Methods 323(2):172–179CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Stephen Hearty
    • 1
    • 2
  • Paul Leonard
    • 1
    • 2
  • Hui Ma
    • 1
  • Richard O’Kennedy
    • 1
    • 2
    • 3
    Email author
  1. 1.School of BiotechnologyDublin City UniversityDublinIreland
  2. 2.National Centre for Sensor ResearchDublin City UniversityDublinIreland
  3. 3.Qatar Foundation and Research ComplexHamad Bin Khalifa University, Education CityDohaQatar

Personalised recommendations