Skip to main content

Transformed Root Culture: From Genetic Transformation to NMR-Based Metabolomics

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1815))

  • 3642 Accesses

Abstract

Hairy root (HR) culture is considered as “green factory” for mass production of bioactive molecules with pharmaceutical relevance. As such, HR culture has an immense potential as a valuable platform to elucidate biosynthetic pathways and physiological processes, generate recombinant therapeutic proteins, assist molecular breeding, and enhance phytoremediation efforts. However, some plant species appear recalcitrant to the classical Agrobacterium rhizogenes transformation techniques. Sonication-assisted Agrobacterium-mediated transformation (SAArT) is a highly effective method to deliver bacteria to target plant tissues that includes exposure of the explants to short periods of ultrasound in the presence of the bacteria.

Nuclear magnetic resonance (NMR)-based metabolomics is one of the most powerful and suitable platforms for identifying and obtaining structural information on a wide range of compounds with a high analytical precision. In terms of plant science, NMR metabolomics is used to determine the phytochemical variations of medicinal plants or commercial cultivars in certain environments and conditions, including biotic stress and plant biotic interaction, structural determination of natural products, quality control of herbal drugs or dietary supplements, and comparison of metabolite differences between plants and their respective in vitro cultures.

In this chapter, we attempt to summarize our knowledge and expertise in induction of hairy roots from rare and recalcitrant plant species by SAArT technique and further methodology for extraction of secondary metabolites of moderate to high polarity and their identification by using NMR-based metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Georgiev M, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnology. Trends Biotechnol 30:528–537. https://doi.org/10.1016/j.tibtech.2012.07.001

    Article  PubMed  CAS  Google Scholar 

  2. Yordanova Z, Georgiev M (2017) Cell factories. In: Brian T, Murray BG, Murphy DJ (eds) Encyclopedia of applied plant sciences, vol II, 2nd edn. Academic Press, Amsterdam, pp 72–76. https://doi.org/10.1016/B978-0-12-394807-6.00158-1

    Chapter  Google Scholar 

  3. Gao W, Sun H-X, Xiao H et al (2014) Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genomics 15:73. https://doi.org/10.1186/1471-2164-15-73

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huang Y, Su C-Y, Kuo H-J et al (2013) A comparison of strategies for multiple-gene co-transformation via hairy root induction. Appl Microbiol Biotechnol 97:8637–8647. https://doi.org/10.1007/s00253-013-5034-3

    Article  PubMed  CAS  Google Scholar 

  5. Ludwig-Müller J, Jahn L, Lippert A et al (2014) Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications. Biotechnol Adv 32:1168–1179. https://doi.org/10.1016/j.biotechadv.2014.03.007

    Article  PubMed  CAS  Google Scholar 

  6. Ibañez S, Talano M, Ontañon O et al (2016) Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. New Biotechnol 33:625–635. https://doi.org/10.1016/j.nbt.2015.11.008

    Article  CAS  Google Scholar 

  7. Georgiev M, Ludwig-Muller J, Bley T (2010) Hairy root culture: copying nature in new bioprocesses. In: Arora R (ed) Medicinal plant biotechnology. CAB International, UK, pp 156–175. https://doi.org/10.1079/9781845936785.0156

    Chapter  Google Scholar 

  8. Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol-genes in the formation of hairy roots. Physiol Plant 100:463–473. https://doi.org/10.1111/j.1399-3054.1997.tb03050.x

    Article  CAS  Google Scholar 

  9. Trick HN, Finer JJ (1997) SAAT: sonicated-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336. https://doi.org/10.1023/A:1018470930944

    Article  CAS  Google Scholar 

  10. Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213:981–989. https://doi.org/10.1007/s004250100566

    Article  PubMed  CAS  Google Scholar 

  11. Liu Z, Park BJ, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol Breed 16:189–197. https://doi.org/10.1007/s11032-005-6616-2

    Article  CAS  Google Scholar 

  12. Beranová M, Rakouský S, Vávrová Z et al (2008) Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell Tiss Org 94:253–259. https://doi.org/10.1007/s11240-007-9335-z

    Article  Google Scholar 

  13. Le Flem-Bonhomme V, Laurain-Mattar D, Fliniaux MA (2004) Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant by A. rhizogenes LBA 9402. Planta 218:890–893. https://doi.org/10.1007/s00425-003-1196-z

    Article  PubMed  CAS  Google Scholar 

  14. Ishida JK, Yoshida S, Ito M et al (2011) Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One 6:e25802. https://doi.org/10.1371/journal.pone.0025802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Georgiev M, Ludwig-Müller J, Alipieva K et al (2011) Sonication-assisted Agrobacterium rhizogenes-mediated transformation of Verbascum xanthophoeniceum Griseb. For bioactive metabolite accumulation. Plant Cell Rep 30:859–866. https://doi.org/10.1007/s00299-010-0981-y

    Article  PubMed  CAS  Google Scholar 

  16. Oliveira MLP, Febres VJ, Costa MGC et al (2009) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28:387–395. https://doi.org/10.1007/s00299-008-0646-2

    Article  PubMed  CAS  Google Scholar 

  17. Dunn W, Broadhurst D, Edison A (2017) Quality assurance and quality control processes: summary of a metabolomics community questionnaire. Metabolomics 13:50. https://doi.org/10.1007/s11306-017-1188-9

    Article  CAS  Google Scholar 

  18. Kim H, Choi Y, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549. https://doi.org/10.1038/nprot.2009.237

    Article  PubMed  CAS  Google Scholar 

  19. Wu X, Li N, Li H et al (2014) An optimized method for NMR-based plant seed metabolomic analysis with maximized polar metabolite extraction efficiency, signal-to-noise ratio, and chemical shift consistency. Analyst 139:1769–1778. https://doi.org/10.1039/C3AN02100A

    Article  PubMed  CAS  Google Scholar 

  20. Brasili E, Filho V (2017) Metabolomics of cancer cell cultures to assess the effects of dietary phytochemicals. Crit Rev Food Sci Nutr 57:1328–1339. https://doi.org/10.1080/10408398.2014.964799

    Article  PubMed  CAS  Google Scholar 

  21. Marshall D, Powers R (2017) Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc 100:1–16. https://doi.org/10.1016/j.pnmrs.2017.01.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Capitani D, Sobolev A, Delfini M (2014) NMR methodologies in the analysis of blueberries. Electrophoresis 35:1615–1626. https://doi.org/10.1002/elps.201300629

    Article  PubMed  CAS  Google Scholar 

  23. de Albuquerque A, Ribeiro D, de Amorim M (2016) Structural determination of complex natural products by quantum mechanical calculations of 13C NMR chemical shifts: development of a parameterized protocol for terpenes. J Mol Model 22:183. https://doi.org/10.1007/s00894-016-3045-6

    Article  PubMed  CAS  Google Scholar 

  24. Alipieva K, Orhan I, Cankaya I et al (2014) Treasure from garden: chemical profiling, pharmacology and biotechnology of mulleins. Phytochem Rev 13:417–444. https://doi.org/10.1007/s11101-014-9361-5

    Article  CAS  Google Scholar 

  25. Gowda G, Raftery D (2015) Can NMR solve some significant challenges in metabolomics? J Magn Reson 260:144–160. https://doi.org/10.1016/j.jmr.2015.07.014

    Article  PubMed Central  CAS  Google Scholar 

  26. Kruger N, Troncoso-Ponce M, Ratcliffe R (2008) 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat Protoc 3:1001–1012. https://doi.org/10.1038/nprot.2008.64

    Article  PubMed  CAS  Google Scholar 

  27. Baker J, Ward J, Beale M (2012) Combined NMR and flow injection ESI-MS for Brassicaceae metabolomics. In: Hardy N, Hall R (eds) Plant metabolomics: methods and protocols, Methods in molecular biology, vol 860. Springer, New York, pp 177–191. https://doi.org/10.1007/978-1-61779-594-7_12

    Chapter  Google Scholar 

  28. Brennan L (2014) NMR-based metabolomics: from sample preparation to applications in nutrition research. Prog Nucl Magn Reson Spectrosc 83:42–49. https://doi.org/10.1016/j.pnmrs.2014.09.001

    Article  PubMed  CAS  Google Scholar 

  29. Zahmanov G, Alipieva K, Denev P et al (2015) Flavonoid glycosides profiling in dwarf elder fruits (Sambucus ebulus L.) and evaluation of their antioxidant and anti-herpes simplex activities. Ind Crop Prod 63:58–64. https://doi.org/10.1016/j.indcrop.2014.10.053

    Article  CAS  Google Scholar 

  30. Zahmanov G, Alipieva K, Simova S et al (2015) Metabolic differentiations of dwarf elder by NMR-based metabolomics. Phytochem Lett 11:404–409. https://doi.org/10.1016/j.phytol.2014.11.021

    Article  CAS  Google Scholar 

  31. Mansfield S, Kim H, Lu F et al (2012) Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 7:1579–1589. https://doi.org/10.1038/nprot.2012.064

    Article  PubMed  CAS  Google Scholar 

  32. der Sar S, Kim H, Meissner A et al (2013) Nuclear magnetic resonance spectroscopy for plant metabolite profiling. In: Weckwerth W, Kahl G (eds) The handbook of plant metabolomics, 1st edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 57–76. https://doi.org/10.1002/9783527669882.ch3

    Chapter  Google Scholar 

  33. Georgiev M, Radziszewska A, Neumann M et al (2015) Metabolic alterations of Verbascum nigrum L. plants and SAArT transformed roots as revealed by NMR-based metabolomics. Plant Cell Tiss Org 123:349–356. https://doi.org/10.1007/s11240-015-0840-1

    Article  CAS  Google Scholar 

  34. Marchev A, Dimitrova P, Koycheva I et al (2017) Altered expression of TRAIL on mouse T cells via ERK phosphorylation by Rhodiola rosea L. and its marker compounds. Food Chem Toxicol 108:419. https://doi.org/10.1016/j.fct.2017.02.009

    Article  PubMed  CAS  Google Scholar 

  35. Vasileva L, Getova D, Doncheva N et al (2016) Beneficial effect of commercial Rhodiola extract in rats with scopolamine-induced memory impairment on active avoidance. J Ethnopharmacol 193:586–591. https://doi.org/10.1016/j.jep.2016.10.011

    Article  PubMed  CAS  Google Scholar 

  36. de Falco B, Incerti G, Bochicchio R et al (2017) Metabolomic analysis of Salvia hispanica seeds using NMR spectroscopy and multivariate data analysis. Ind Crop Prod 99:86–96. https://doi.org/10.1016/j.indcrop.2017.01.019

    Article  CAS  Google Scholar 

  37. Alipieva K, Simova S, Zahmanov G et al (2017) New tetraacetylated iridoid glycosides from Sambucus ebulus L. leaves. Phytochem Lett 20:429–432. https://doi.org/10.1016/j.phytol.2017.01.003

    Article  CAS  Google Scholar 

  38. Marchev A, Yordanova Z, Alipieva K et al (2016) Genetic transformation of rare Verbascum eriophorum Godr. Plants and metabolic alterations revealed by NMR-based metabolomics. Biotechnol Lett 38:1621–1629. https://doi.org/10.1007/s10529-016-2138-8

    Article  PubMed  CAS  Google Scholar 

  39. Prakash I, Ma G, Bunders C et al (2017) A novel diterpene glycoside with nine glucose units from Stevia rebaudiana Bertoni. Molecules 7:10. https://doi.org/10.3390/biom7010010

    Article  CAS  Google Scholar 

  40. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  41. Berendzen K, Searle I, Ravenscroft D et al (2005) A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-0 and Landsberg erecta. Plant Methods 1:4. https://doi.org/10.1186/1746-4811-1-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

This work has been supported by a grant from NSF of Bulgaria and DAAD Germany (Contract Number DNTS/Germany 01/8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milen I. Georgiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marchev, A.S., Yordanova, Z.P., Georgiev, M.I. (2018). Transformed Root Culture: From Genetic Transformation to NMR-Based Metabolomics. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_32

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics