Skip to main content

Proteomics as a Tool to Study Molecular Changes During Plant Morphogenesis In Vitro

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Abstract

Proteome analysis represents a promising approach for plant tissue culture since it is now possible to identify and quantify proteins on a large scale. Biomarker discovery and the study of the molecular events associated with in vitro plant morphogenesis are considered potential targets for application of proteomics technologies. This chapter describes a protocol for application in in vitro plant material using two proteomics approaches: 2-DE coupled to mass spectrometry and liquid chromatography-linked tandem mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vale EM, Heringer AS, Barroso T et al (2014) Comparative proteomic analysis of somatic embryo maturation in Carica papaya L. Proteome Sci 12:1–18. https://doi.org/10.1186/1477-5956-12-37

    Article  CAS  Google Scholar 

  2. Heringer AS, Barroso T, Macedo AF et al (2015) Label-free quantitative proteomics of embryogenic and non-embryogenic callus during sugarcane somatic embryogenesis. PLoS One 10:e0127803. https://doi.org/10.1371/journal.pone.0127803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. dos Santos ALW, Elbl P, Navarro BV et al (2016) Quantitative proteomic analysis of Araucaria angustifolia (Bertol.) Kuntze cell lines with contrasting embryogenic potential. J Proteome 130:180–189. https://doi.org/10.1016/j.jprot.2015.09.027

    Article  CAS  Google Scholar 

  4. Fraga HPF, Vieira LN, Heringer AS et al (2016) DNA methylation and proteome profiles of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures as affected by plant growth regulators supplementation. Plant Cell Tiss Org 125:353–374. https://doi.org/10.1007/s11240-016-0956-y

    Article  CAS  Google Scholar 

  5. Reis RS, Vale EM, Heringer AS et al (2016) Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J Proteome 130:170–179. https://doi.org/10.1016/j.jprot.2015.09.029

    Article  CAS  Google Scholar 

  6. Heringer AS, Reis RS, Passamani LZ et al (2017) Comparative proteomics analysis of the effect of combined red and blue lights on sugarcane somatic embryogenesis. Acta Physiol Plantarum 39:52. https://doi.org/10.1007/s11738-017-2349-1

    Article  CAS  Google Scholar 

  7. Schluter H, Apweiler R, Holzhutter H et al (2009) Finding one’s way in proteomics: a protein species nomenclature. Chem Central J 3:11. https://doi.org/10.1186/1752-153X-3-11

    Article  CAS  Google Scholar 

  8. Jorrín-Novo JV, Pascual J, Sánchez-Lucas R et al (2015) Fourteen years of plant proteomics reflected in proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms. Proteomics 15:1089–1112. https://doi.org/10.1002/pmic.201400349

    Article  PubMed  CAS  Google Scholar 

  9. Rogowska-Wrzesinska A, Le Bihan MC, Thaysen-Andersen M et al (2013) 2D gels still have a niche in proteomics. J Proteome 88:4–13. https://doi.org/10.1016/j.jprot.2013.01.010

    Article  CAS  Google Scholar 

  10. Chen EI, Hewel J, Felding-Habermann B et al (2006) Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT). Mol Cell Proteomics 5:53–56. https://doi.org/10.1074/mcp.T500013-MCP200

    Article  PubMed  CAS  Google Scholar 

  11. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotech 19:242–247. https://doi.org/10.1038/85686

    Article  CAS  Google Scholar 

  12. Angelo Schuabb Heringer, Claudete Santa-Catarina, Vanildo Silveira, (2018) Insights from Proteomic Studies into Plant Somatic Embryogenesis. PROTEOMICS 18 (5-6):1700265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from São Paulo Research Foundation—FAPESP (Proc. 15/21075-4), Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro—FAPERJ (Proc. E26/201.574/2014) and National Council for Scientific and Technological Development-CNPq (Proc. 454451/2014-8).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wendt dos Santos, A.L., Souza Reis, R., Schuabb Heringer, A., Segal Floh, E.I., Santa-Catarina, C., Silveira, V. (2018). Proteomics as a Tool to Study Molecular Changes During Plant Morphogenesis In Vitro. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics