Skip to main content

Immobilization of Nonactivated Unfixed Platelets for Real-Time Single-Cell Analysis

  • Protocol
  • First Online:
Platelets and Megakaryocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1812))

Abstract

Existing methods for measuring the response of individual platelets to stimulation are limited. They either measure each platelet at one discrete time-point (flow cytometry) or rely on adhesive ligands to immobilize platelets that concomitantly generate activation signals (microscopy). Such methods of immobilization make it impossible to assess resting platelets, the changes that occur as platelets transition from resting to active states, or the signals generated by soluble agonists, such as ADP and thrombin, or by mechanical stimulus, independently from those generated by the adhesive ligand. Here we describe a microscopy method that allows the immobilization of platelets to a glass cover slip without triggering platelet activation. This method makes use of specific antibodies that bind platelet PECAM-1 without activating it. Platelets can therefore be immobilized to PECAM-1 antibody coated biochips without causing activation and perfused with agonists or inhibitors. Using this method, platelets can be stimulated by an array of soluble agonists at any concentration or combination, in the presence or absence of inhibitors or shear forces. This chapter describes in detail this PECAM-1 mediated immobilized platelet method and its use for measuring changes in Ca2+ signaling in individual platelets under a number of different conditions. While we focus on the measurement of Ca2+ dynamics in this chapter, it is important to consider that the basic method we describe will easily lend its self to other measures of platelet activation (integrin activation, shape change, actin dynamics, degranulation), and may, therefore, be used to measure almost any facet of platelet activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones CI, Garner SF, Angenent W, Bernard A, Berzuini C, Burns P, Farndale RW, Hogwood J, Rankin A, Stephens JC, Tom BD, Walton J, Dudbridge F, Ouwehand WH, Goodall AH (2007) Mapping the platelet profile for functional genomic studies and demonstration of the effect size of the GP6 locus. J Thromb Haemost 5(8):1756–1765. https://doi.org/10.1111/j.1538-7836.2007.02632.x

    Article  PubMed  CAS  Google Scholar 

  2. Jones CI, Tucker KL, Sasikumar P, Sage T, Kaiser WJ, Moore C, Emerson M, Gibbins JM (2014) Integrin-linked kinase regulates the rate of platelet activation and is essential for the formation of stable thrombi. J Thromb Haemost 12(8):1342–1352. https://doi.org/10.1111/jth.12620

    Article  PubMed  CAS  Google Scholar 

  3. Stefanini L, Boulaftali Y, Ouellette TD, Holinstat M, Desire L, Leblond B, Andre P, Conley PB, Bergmeier W (2012) Rap1-Rac1 circuits potentiate platelet activation. Arterioscler Thromb Vasc Biol 32(2):434–441. https://doi.org/10.1161/ATVBAHA.111.239194

    Article  PubMed  CAS  Google Scholar 

  4. Nesbitt WS, Harper IS, Schoenwaelder SM, Yuan Y, Jackson SP (2012) A live cell micro-imaging technique to examine platelet calcium signaling dynamics under blood flow. Methods Mol Biol 788:73–89. https://doi.org/10.1007/978-1-61779-307-3_6

    Article  PubMed  CAS  Google Scholar 

  5. Mazzucato M, Pradella P, Cozzi MR, De Marco L, Ruggeri ZM (2002) Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood 100(8):2793–2800. https://doi.org/10.1182/blood-2002-02-0514

    Article  PubMed  CAS  Google Scholar 

  6. Nesbitt WS, Kulkarni S, Giuliano S, Goncalves I, Dopheide SM, Yap CL, Harper IS, Salem HH, Jackson SP (2002) Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J Biol Chem 277(4):2965–2972. https://doi.org/10.1074/jbc.M110070200

    Article  PubMed  CAS  Google Scholar 

  7. Yap CL, Anderson KE, Hughan SC, Dopheide SM, Salem HH, Jackson SP (2002) Essential role for phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin alpha(IIb)beta(3). Blood 99(1):151–158

    Article  CAS  PubMed  Google Scholar 

  8. Metzelaar MJ, Korteweg J, Sixma JJ, Nieuwenhuis HK (1991) Biochemical characterization of PECAM-1 (CD31 antigen) on human platelets. Thromb Haemost 66(6):700–707

    Article  CAS  PubMed  Google Scholar 

  9. Wu XW, Lian EC (1997) Binding properties and inhibition of platelet aggregation by a monoclonal antibody to CD31 (PECAM-1). Arterioscler Thromb Vasc Biol 17(11):3154–3158

    Article  CAS  PubMed  Google Scholar 

  10. Newman PJ (1994) The role of PECAM-1 in vascular cell biology. Ann N Y Acad Sci 714:165–174

    Article  CAS  PubMed  Google Scholar 

  11. Novinska MS, Rathoare V, Newman DK, Newman PJ (2007) PECAM-1. Platelets:chapter 11. Elsevier, London, pp 221–230

    Book  Google Scholar 

  12. Jackson DE, Kupcho KR, Newman PJ (1997) Characterization of Phosphotyrosine binding motifs in the cytoplasmic domain of platelet/endothelial cell adhesion Molecule-1 (PECAM-1) that are required for the cellular association and activation of the protein-tyrosine phosphatase, SHP-2. J Biol Chem 272(40):24868–24875

    Article  CAS  PubMed  Google Scholar 

  13. Vivier E, Daeron M (1997) Immunoreceptor tyrosine-based inhibitory motifs. Immunol Today 18:286–291

    Article  CAS  PubMed  Google Scholar 

  14. Paddock C, Lytle BL, Peterson FC, Holyst T, Newman PJ, Volkman BF, Newman DK (2011) Residues within a lipid-associated segment of the PECAM-1 cytoplasmic domain are susceptible to inducible, sequential phosphorylation. Blood 117(22):6012–6023. https://doi.org/10.1182/blood-2010-11-317867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sun QH, DeLisser HM, Zukowski MM, Paddock C, Albelda SM, Newman PJ (1996) Individually distinct Ig homology domains in PECAM-1 regulate homophilic binding and modulate receptor affinity. J Biol Chem 271(19):11090–11098

    Article  CAS  PubMed  Google Scholar 

  16. Jones CI, Sage T, Moraes LA, Vaiyapuri S, Hussain U, Tucker KL, Barrett NE, Gibbins JM (2014) Platelet endothelial cell adhesion molecule-1 inhibits platelet response to thrombin and von Willebrand factor by regulating the internalization of glycoprotein Ib via AKT/glycogen synthase kinase-3/dynamin and integrin alphaIIbbeta3. Arterioscler Thromb Vasc Biol 34(9):1968–1976. https://doi.org/10.1161/ATVBAHA.114.304097

    Article  PubMed  CAS  Google Scholar 

  17. Moraes LA, Barrett NE, Jones CI, Holbrook LM, Spyridon M, Sage T, Newman DK, Gibbins JM (2010) Platelet endothelial cell adhesion molecule-1 regulates collagen-stimulated platelet function by modulating the association of phosphatidylinositol 3-kinase with Grb-2-associated binding protein-1 and linker for activation of T cells. J Thromb Haemost 8(11):2530–2541. https://doi.org/10.1111/j.1538-7836.2010.04025.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jones CI, Garner SF, Moraes LA, Kaiser WJ, Rankin A, Bloodomics C, Ouwehand WH, Goodall AH, Gibbins JM (2009) PECAM-1 expression and activity negatively regulate multiple platelet signaling pathways. FEBS Lett 583(22):3618–3624. https://doi.org/10.1016/j.febslet.2009.10.037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cicmil M, Thomas JM, Leduc M, Bon C, Gibbins JM (2002) PECAM-1 signalling inhibits the activation of human platelets. Blood 99:137–144

    Article  CAS  PubMed  Google Scholar 

  20. Jackson DE, Ward CM, Wang R, Newman PJ (1997) The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. J Biol Chem 272(11):6986–6993

    Article  CAS  PubMed  Google Scholar 

  21. Varon D, Jackson DE, Shenkman B, Dardik R, Tamarin I, Savion N, Newman PJ (1998) Platelet/endothelial cell adhesion molecule-1 serves as a costimulatory agonist receptor that modulates integrin-dependent adhesion and aggregation of human platelets. Blood 91(2):500–507

    PubMed  CAS  Google Scholar 

  22. Morton LF, Hargreaves PG, Farndale RW, Young RD, Barnes MJ (1995) Integrin alpha 2 beta 1-independent activation of platelets by simple collagen-like peptides: collagen tertiary (triple-helical) and quaternary (polymeric) structures are sufficient alone for alpha 2 beta 1-independent platelet reactivity. Biochem J 306:337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium 27(2):97–106. https://doi.org/10.1054/ceca.1999.0095

    Article  PubMed  CAS  Google Scholar 

  24. Rolf MG, Brearley CA, Mahaut-Smith MP (2001) Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha,beta-methylene ATP. Thromb Haemost 85(2):303–308

    Article  CAS  PubMed  Google Scholar 

  25. Burkhart JM, Vaudel M, Gambaryan S, Radau S, Walter U, Martens L, Geiger J, Sickmann A, Zahedi RP (2012) The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 120(15):e73–e82. https://doi.org/10.1182/blood-2012-04-416594

    Article  PubMed  CAS  Google Scholar 

  26. Wright JR, Amisten S, Goodall AH, Mahaut-Smith MP (2016) Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines. Thromb Haemost 116(2):272–284. https://doi.org/10.1160/TH15-11-0891

    Article  PubMed  PubMed Central  Google Scholar 

  27. Boyanova D, Nilla S, Birschmann I, Dandekar T, Dittrich M (2012) PlateletWeb: a systems biologic analysis of signaling networks in human platelets. Blood 119(3):e22–e34. https://doi.org/10.1182/blood-2011-10-387308

    Article  PubMed  CAS  Google Scholar 

  28. Ilkan Z, Wright JR, Goodall AH, Gibbins JM, Jones CI, Mahaut-Smith MP (2017) Evidence for shear-mediated Ca2+ entry through Mechanosensitive Cation channels in human platelets and a megakaryocytic cell line. J Biol Chem 292(22):9204–9217. https://doi.org/10.1074/jbc.M116.766196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000):55–60. https://doi.org/10.1126/science.1193270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483(7388):176–181. https://doi.org/10.1038/nature10812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, Ng CA, Sachs F, Gottlieb PA, Martinac B (2016) Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun 7:10366. https://doi.org/10.1038/ncomms10366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris I. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bye, A.P., Ilkan, Z., Unsworth, A.J., Jones, C.I. (2018). Immobilization of Nonactivated Unfixed Platelets for Real-Time Single-Cell Analysis. In: Gibbins, J., Mahaut-Smith, M. (eds) Platelets and Megakaryocytes . Methods in Molecular Biology, vol 1812. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8585-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8585-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8584-5

  • Online ISBN: 978-1-4939-8585-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics