Skip to main content

A Live Cell Micro-imaging Technique to Examine Platelet Calcium Signaling Dynamics Under Blood Flow

  • Protocol
  • First Online:
Platelets and Megakaryocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 788))

Abstract

The platelet is a specialized adhesive cell that plays a key role in thrombus formation under both physiological and pathological blood flow conditions. Platelet adhesion and activation are dynamic processes associated with rapid morphological and functional changes, with the earliest signaling events occurring over a subsecond time-scale. The relatively small size of platelets combined with the dynamic nature of platelet adhesion under blood flow means that the investigation of platelet signaling events requires techniques with both high spatial discrimination and rapid temporal resolution. Unraveling the complex signaling processes governing platelet adhesive function under conditions of hemodynamic shear stress has been a longstanding goal in platelet research and has been greatly influenced by the development and application of microimaging-based techniques. Advances in the area of epi-fluorescence and confocal-based platelet calcium (Ca2+) imaging have facilitated the in vitro and in vivo elucidation of the early signaling events regulating platelet adhesion and activation. These studies have identified distinct Ca2+ signaling mechanisms that serve to dynamically regulate activation of the major platelet integrin αIIbβ3 and associated adhesion and aggregation processes under flow. This chapter describes in detail a ratiometric calcium imaging protocol and associated troubleshooting procedures developed in our laboratory to examine live platelet Ca2+ signaling dynamics. This technique provides a method for high-resolution imaging of the Ca2+ dynamics underpinning platelet adhesion and thrombus formation under conditions of pathophysiological shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arderiu, G., et al., External calcium facilitates signalling, contractile and secretory mechanisms induced after activation of platelets by collagen. Platelets, 2008. 19(3): p. 172–81.

    Article  PubMed  CAS  Google Scholar 

  2. Giuliano, S., et al., Bidirectional integrin alphaIIbbeta3 signalling regulating platelet adhesion under flow: contribution of protein kinase C. Biochem J, 2003. 372(Pt 1): p. 163–72.

    Article  PubMed  CAS  Google Scholar 

  3. Goncalves, I., et al., Integrin alpha IIb beta 3-dependent calcium signals regulate platelet-fibrinogen interactions under flow. Involvement of phospholipase C gamma 2. J Biol Chem, 2003. 278(37): p. 34812–22.

    Article  PubMed  CAS  Google Scholar 

  4. Goncalves, I., et al., Importance of temporal flow gradients and integrin alphaIIbbeta3 mechanotransduction for shear activation of platelets. J Biol Chem, 2005. 280(15): p. 15430–7.

    Article  PubMed  CAS  Google Scholar 

  5. Maxwell, M.J., et al., SHIP1 and Lyn Kinase Negatively Regulate Integrin alpha IIb beta 3 signaling in platelets. J Biol Chem, 2004. 279(31): p. 32196–204.

    Article  PubMed  CAS  Google Scholar 

  6. Mazzucato, M., et al., Distinct spatio-temporal Ca2+ signaling elicited by integrin alpha2beta1 and glycoprotein VI under flow. Blood, 2009. 114(13): p. 2793–801.

    Article  PubMed  CAS  Google Scholar 

  7. Mazzucato, M., et al., Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood, 2002. 100(8): p. 2793–800.

    Article  PubMed  CAS  Google Scholar 

  8. Nesbitt, W.S., et al., Intercellular calcium communication regulates platelet aggregation and thrombus growth. J Cell Biol, 2003. 160(7): p. 1151–61.

    Article  PubMed  CAS  Google Scholar 

  9. Nesbitt, W.S., et al., Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J Biol Chem, 2002. 277(4): p. 2965–72.

    Article  PubMed  CAS  Google Scholar 

  10. Sun, D.S., et al., Calcium oscillation and phosphatidylinositol 3-kinase positively regulate integrin alpha(IIb)beta3-mediated outside-in signaling. J Biomed Sci, 2005. 12(2): p. 321–33.

    Article  PubMed  CAS  Google Scholar 

  11. van Gestel, M.A., et al., Real-time detection of activation patterns in individual platelets during thromboembolism in vivo: differences between thrombus growth and embolus formation. J Vasc Res, 2002. 39(6): p. 534–43.

    Article  PubMed  Google Scholar 

  12. Rink, T.J. and S.O. Sage, Calcium signaling in human platelets. Annu Rev Physiol, 1990. 52: p. 431–49.

    Article  PubMed  CAS  Google Scholar 

  13. Authi, K.S., TRP channels in platelet function. Handb Exp Pharmacol, 2007(179): p. 425–43.

    Article  PubMed  CAS  Google Scholar 

  14. Jardin, I., et al., Intracellular calcium release from human platelets: different messengers for multiple stores. Trends Cardiovasc Med, 2008. 18(2): p. 57–61.

    Article  PubMed  CAS  Google Scholar 

  15. Rosado, J.A., et al., Two pathways for store-mediated calcium entry differentially dependent on the actin cytoskeleton in human platelets. J Biol Chem, 2004. 279(28): p. 29231–5.

    Article  PubMed  CAS  Google Scholar 

  16. Rosado, J.A. and S.O. Sage, The actin cytoskeleton in store-mediated calcium entry. J Physiol, 2000. 526 Pt 2: p. 221–9.

    Article  PubMed  CAS  Google Scholar 

  17. Varga-Szabo, D., A. Braun, and B. Nieswandt, Calcium signaling in platelets. J Thromb Haemost, 2009. 7(7): p. 1057–66.

    Article  PubMed  CAS  Google Scholar 

  18. Suzuki-Inoue, K., et al., Murine GPVI stimulates weak integrin activation in PLCgamma2−/− platelets: involvement of PLCgamma1 and PI3-kinase. Blood, 2003. 102(4): p. 1367–73.

    Article  PubMed  CAS  Google Scholar 

  19. Berridge, M.J., M.D. Bootman, and H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003. 4(7): p. 517–29.

    Article  PubMed  CAS  Google Scholar 

  20. Shattil, S.J. and L.F. Brass, Induction of the fibrinogen receptor on human platelets by intracellular mediators. J Biol Chem, 1987. 262(3): p. 992–1000.

    PubMed  CAS  Google Scholar 

  21. Lian, L., et al., The relative role of PLCbeta and PI3Kgamma in platelet activation. Blood, 2005. 106(1): p. 110–7.

    Article  PubMed  CAS  Google Scholar 

  22. Quinton, T.M. and W.L. Dean, Multiple inositol 1,4,5-trisphosphate receptor isoforms are present in platelets. Biochem Biophys Res Commun, 1996. 224(3): p. 740–6.

    Article  PubMed  CAS  Google Scholar 

  23. El-Daher, S.S., et al., Distinct localization and function of (1,4,5)IP(3) receptor subtypes and the (1,3,4,5)IP(4) receptor GAP1(IP4BP) in highly purified human platelet membranes. Blood, 2000. 95(11): p. 3412–22.

    PubMed  CAS  Google Scholar 

  24. Braun, A., et al., STIM1 is essential for Fcgamma receptor activation and autoimmune inflammation. Blood, 2009. 113(5): p. 1097–104.

    Article  PubMed  CAS  Google Scholar 

  25. Varga-Szabo, D., et al., The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med, 2008. 205(7): p. 1583–91.

    Article  PubMed  CAS  Google Scholar 

  26. Braun, A., et al., Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood, 2009. 113(9): p. 2056–63.

    Article  PubMed  CAS  Google Scholar 

  27. Vial, C., et al., A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors. Br J Pharmacol, 2002. 135(2): p. 363–72.

    Article  PubMed  CAS  Google Scholar 

  28. Hassock, S.R., et al., Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood, 2002. 100(8): p. 2801–11.

    Article  PubMed  CAS  Google Scholar 

  29. Sage, S.O., E.H. Yamoah, and J.W. Heemskerk, The roles of P(2X1)and P(2 T AC)receptors in ADP-evoked calcium signalling in human platelets. Cell Calcium, 2000. 28(2): p. 119–26.

    Article  PubMed  CAS  Google Scholar 

  30. Harper, A.G. and S.O. Sage, A key role for reverse Na+/Ca2+ exchange influenced by the actin cytoskeleton in store-operated Ca2+ entry in human platelets: evidence against the de novo conformational coupling hypothesis. Cell Calcium, 2007. 42(6): p. 606–17.

    Article  PubMed  CAS  Google Scholar 

  31. Tolhurst, G., et al., Interplay between P2Y(1), P2Y(12), and P2X(1) receptors in the activation of megakaryocyte cation influx currents by ADP: evidence that the primary megakaryocyte represents a fully functional model of platelet P2 receptor signaling. Blood, 2005. 106(5): p. 1644–51.

    Article  PubMed  CAS  Google Scholar 

  32. Nesbitt, W.S., et al., A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 2009. 15(6): p. 665–73.

    Article  PubMed  CAS  Google Scholar 

  33. Kulkarni, S., et al., Techniques to examine platelet adhesive interactions under flow. Methods Mol Biol, 2004. 272: p. 165–86.

    PubMed  CAS  Google Scholar 

  34. Nesbitt, W.S., et al., Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J Biol Chem, 2002. 277(4): p. 2965–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warwick S. Nesbitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nesbitt, W.S., Harper, I.S., Schoenwaelder, S.M., Yuan, Y., Jackson, S.P. (2012). A Live Cell Micro-imaging Technique to Examine Platelet Calcium Signaling Dynamics Under Blood Flow. In: Gibbins, J., Mahaut-Smith, M. (eds) Platelets and Megakaryocytes. Methods in Molecular Biology, vol 788. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-307-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-307-3_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-306-6

  • Online ISBN: 978-1-61779-307-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics