Skip to main content

Thyroid Hormones and Derivatives: Endogenous Thyroid Hormones and Their Targets

  • Protocol
  • First Online:
Thyroid Hormone Nuclear Receptor

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1801))

Abstract

More than a century after the discovery of L-Thyroxine, the main thyroid hormone secreted solely by the thyroid gland, several metabolites of this iodinated, tyrosine-derived ancestral hormone have been identified. These are utilized as hormones during development, differentiation, metamorphosis, and regulation of most biochemical reactions in vertebrates and their precursor species. Among those metabolites are the thyromimetically active 3,3′,5-Triiodo-L-thyronine (T3) and 3,5-Diiodo-L-thronine, reverse-T3 (3,3′,5′-Triiodo-L-thyronine) with still unclear function, the recently re-discovered thyronamines (e.g., 3-Iodo-thyronamine), which exert in part T3-antagonistic functions, the thyroacetic acids (e.g., Tetrac and Triac), as well as various sulfated or glucuronidated metabolites of this panel of iodinated signaling compounds. In the blood most of these hydrophobic metabolites are tightly bound to the serum distributor proteins thyroxine binding globulin (TBG), transthyretin (TTR), albumin or apolipoprotein B100. Cellular import and export of these charged, highly hydrophobic amino acid derivatives requires a number of cell-membrane transporters or facilitators such as MCT8 or MCT10 and members of the OATP and LAT families of transporters. Depending on their structure, the thyroid hormone metabolites exert their cellular action by binding and thus modulating the function of various receptors systems (e.g., ανβ3 integrin receptor and transient receptor potential channels (TRPM8) of the cell membrane), in part linked to intracellular downstream kinase signaling cascades, and several isoforms of membrane-associated, mitochondrial or nuclear thyroid hormone receptors (TR), which are members of the c-erbA family of ligand-modulated transcription factors. Intracellular deiodinase selenoenzymes, which obligatory are membrane integrated enzymes, ornithine decarboxylase and monoamine oxidases control local availability of biologically active thyroid hormone metabolites. Inactivation of thyroid hormone metabolites occurs mainly by deiodination, sulfation or glucuronidation, reactions which favor their renal or fecal elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor E, Heyland A (2017) Evolution of thyroid hormone signaling in animals: non-genomic and genomic modes of action. Mol Cell Endocrinol 459:14–20. https://doi.org/10.1016/j.mce.2017.05.019. [Epub ahead of print]. Review. PMID: 28549993

    Article  PubMed  CAS  Google Scholar 

  2. Holzer G, Roux N, Laudet V (2017) Evolution of ligands, receptors and metabolizing enzymes of thyroid signaling. Mol Cell Endocrinol 459:5–13. https://doi.org/10.1016/j.mce.2017.03.021. [Epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  3. Sower SA, Hausken KN (2017) A lamprey view on the origins of neuroendocrine regulation of the thyroid axis. Mol Cell Endocrinol 459:21–27. https://doi.org/10.1016/j.mce.2017.04.012. [Epub ahead of print] Review. PMID: 28412521

    Article  PubMed  CAS  Google Scholar 

  4. Moeller LC, Broecker-Preuss M (2011) Transcriptional regulation by nonclassical action of thyroid hormone. Thyroid Res 4 Suppl 1:S6. doi: https://doi.org/10.1186/1756-6614-4-S1-S6. PMID: 21835053

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brix K, Führer D, Biebermann H (2011) Molecules important for thyroid hormone synthesis and action—known facts and future perspectives. Thyroid Res 4 Suppl 1:S9. doi: https://doi.org/10.1186/1756-6614-4-S1-S9

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vella KR, Hollenberg AN (2017) The actions of thyroid hormone signaling in the nucleus. Mol Cell Endocrinol. doi: https://doi.org/10.1016/j.mce.2017.03.001. [Epub ahead of print] PMID: 28286327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Mondal S, Mugesh G (2017) Novel thyroid hormone analogues, enzyme inhibitors and mimetics, and their action. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.04.006. [Epub ahead of print] Review. PMID: 28408161

  8. Boas M, Feldt-Rasmussen U, Main KM (2012) Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 355(2):240–248. https://doi.org/10.1016/j.mce.2011.09.005. Epub 2011 Sep 10. Review.PMID: 21939731

    Article  PubMed  CAS  Google Scholar 

  9. Langer P (2010) The impacts of organochlorines and other persistent pollutants on thyroid and metabolic health. Front Neuroendocrinol 31(4):497–518. https://doi.org/10.1016/j.yfrne.2010.08.001. Epub 2010 Aug 24. Review. PMID: 20797403

    Article  PubMed  CAS  Google Scholar 

  10. Köhrle J (2008) Environment and endocrinology: the case of thyroidology. Ann Endocrinol (Paris) 69(2):116–122. https://doi.org/10.1016/j.ando.2008.02.008. Epub 2008 Apr 28. Review. PMID: 18440490

    Article  CAS  Google Scholar 

  11. Murk AJ, Rijntjes E, Blaauboer BJ, Clewell R, Crofton KM, Dingemans MM, Furlow JD, Kavlock R, Köhrle J, Opitz R, Traas T, Visser TJ, Xia M, Gutleb AC (2013) Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicol In Vitro 27(4):1320–1346. https://doi.org/10.1016/j.tiv.2013.02.012. Epub 2013 Feb 27. Review. PMID: 23453986

    Article  PubMed  CAS  Google Scholar 

  12. Kendall EC (1914) Studies in the chemistry and physiology of the thyroid. I. The determination of iodine in the thyroid. J Biol Chem 19:251–256

    CAS  Google Scholar 

  13. Kendall EC (1919) Isolation of the iodine compound which occurs in the thyroid. J Biol Chem 39:125–147

    CAS  Google Scholar 

  14. Harington CR (1926) Chemistry of thyroxine: isolation of thyroxine from the thyroid gland. Biochem J 20(2):293–299. No abstract available. PMID:16743658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hennessey JV (2017) The emergence of levothyroxine as a treatment for hypothyroidism. Endocrine 55(1):6–18. https://doi.org/10.1007/s12020-016-1199-8. Epub 2016 Dec 16. Review.PMID: 27981511

    Article  PubMed  CAS  Google Scholar 

  16. Wassner AJ, Brown RS (2015) Congenital hypothyroidism: recent advances. Curr Opin Endocrinol Diabetes Obes 22(5):407–412. https://doi.org/10.1097/MED.0000000000000181

    Article  PubMed  CAS  Google Scholar 

  17. Okosieme O, Gilbert J, Abraham P, Boelaert K, Dayan C, Gurnell M, Leese G, McCabe C, Perros P, Smith V, Williams G, Vanderpump M (2016) Management of primary hypothyroidism: statement by the British Thyroid Association Executive Committee. Clin Endocrinol 84(6):799–808. https://doi.org/10.1111/cen.12824. Epub 2015 Jun 25

    Article  Google Scholar 

  18. Wartofsky L (2013) Combination L-T3 and L-T4 therapy for hypothyroidism. Curr Opin Endocrinol Diabetes Obes 20(5):460–466. https://doi.org/10.1097/01.med.0000432611.03732.49. Review. PMID: 23974776

    Article  PubMed  CAS  Google Scholar 

  19. Jonklaas J (2016) Risks and safety of combination therapy for hypothyroidism. Expert Rev Clin Pharmacol 9(8):1057–1067. https://doi.org/10.1080/17512433.2016.1182019. Epub 2016 May 9

    Article  PubMed  CAS  Google Scholar 

  20. Hennessey JV (2015) Historical and current perspective in the use of thyroid extracts for the treatment of hypothyroidism. Endocr Pract 21(10):1161–1170. https://doi.org/10.4158/EP14477.RA. Epub 2015 Jun 29. Review. PMID: 26121440

    Article  PubMed  Google Scholar 

  21. Groeneweg S, Peeters RP, Visser TJ, Visser WE (2017) Therapeutic applications of thyroid hormone analogues in resistance to thyroid hormone (RTH) syndromes. Mol Cell Endocrinol 458:82–90. https://doi.org/10.1016/j.mce.2017.02.029. [Epub ahead of print] PMID: 28235578

    Article  PubMed  CAS  Google Scholar 

  22. Lammel Lindemann J, Webb P (2016) Sobetirome: the past, present and questions about the future. Expert Opin Ther Targets 20(2):145–149. https://doi.org/10.1517/14728222.2016.1090429. Epub 2015 Nov 13. PMID: 26565124

    Article  PubMed  CAS  Google Scholar 

  23. Regina A, Majlesi N (2016) Notes from the field. Thyrotoxicosis after consumption of dietary supplements purchased through the internet—Staten Island, New York, 2015. MMWR Morb Mortal Wkly Rep 65:353–354. https://doi.org/10.15585/mmwr.mm6513a4

    Article  PubMed  Google Scholar 

  24. Kang GY, Parks JR, Fileta B, Chang A, Abdel-Rahim MM, Burch HB, Bernet VJ (2013) Thyroxine and triiodothyronine content in commercially available thyroid health supplements. Thyroid 23(10):1233–1237. https://doi.org/10.1089/thy.2013.0101. Epub 2013 Sep 14

    Article  PubMed  CAS  Google Scholar 

  25. Germano S (2015) In Rebuff to Usada, WADA declines to ban thyroid medication. http://www.wsj.com/articles/in-rebuff-to-usada-wada-declines-to-ban-thyroid-medication-1443568862

  26. Colin IM, Denef JF, Lengelé B, Many MC, Gérard AC (2013) Recent insights into the cell biology of thyroid angiofollicular units. Endocr Rev 34(2):209–238. https://doi.org/10.1210/er.2012-1015. Epub 2013 Jan 24. Review. PMID: 23349248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Carvalho DP, Dupuy C (2017) Thyroid hormone biosynthesis and release. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.01.038. [Epub ahead of print] PMID: 28153798

  28. Szinnai G (2014) Clinical genetics of congenital hypothyroidism. Endocr Dev 26:60–78. https://doi.org/10.1159/000363156. Epub 2014 Aug 29. Review. PMID: 25231445

    Article  PubMed  CAS  Google Scholar 

  29. Dumitrescu AM, Refetoff S (2015) Impaired sensitivity to thyroid hormone: defects of transport, metabolism and action. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A (eds) Endotext [Internet]. MDText.com, South Dartmouth, MA. PMID: 25905294

    Google Scholar 

  30. Köhrle J (2015) Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes 22(5):392–401. https://doi.org/10.1097/MED.0000000000000190. Review. PMID: 26313901

    Article  PubMed  CAS  Google Scholar 

  31. Dunn JT, Dunn AD (1999) The importance of thyroglobulin structure for thyroid hormone biosynthesis. Biochimie 81(5):505–509

    Article  PubMed  CAS  Google Scholar 

  32. Rokita SE, Adler JM, McTamney PM, Watson JA Jr (2010) Efficient use and recycling of the micronutrient iodide in mammals. Biochimie 92(9):1227–1235. https://doi.org/10.1016/j.biochi.2010.02.013. Epub 2010 Feb 16. Review. PMID: 20167242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wu SY, Green WL, Huang WS, Hays MT, Chopra IJ (2005) Alternate pathways of thyroid hormone metabolism. Thyroid 15(8):943–958. Review. PMID: 16131336

    Article  PubMed  CAS  Google Scholar 

  34. Schweizer U, Steegborn C (2015) New insights into the structure and mechanism of iodothyronine deiodinases. J Mol Endocrinol 55(3):R37–R52. https://doi.org/10.1530/JME-15-0156. Epub 2015 Sep 21. Review. PMID: 26390881

    Article  PubMed  CAS  Google Scholar 

  35. Meinhold H, Gramm HJ, Meissner W, Zimmermann J, Schwander J, Dennhardt R, Voigt K (1991) Elevated serum diiodotyrosine (DIT) in severe infections and sepsis: DIT, a possible new marker of leukocyte activity. J Clin Endocrinol Metab 72(4):945–953. PMID: 2005222

    Article  PubMed  CAS  Google Scholar 

  36. Schweizer U, Johannes J, Bayer D, Braun D (2014) Structure and function of thyroid hormone plasma membrane transporters. Eur Thyroid J 3(3):143–153. https://doi.org/10.1159/000367858. Epub 2014 Sep 10. Review. PMID: 2553889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mondal S, Raja K, Schweizer U, Mugesh G (2016) Chemistry and biology in the biosynthesis and action of thyroid hormones. Angew Chem Int Ed Engl 55(27):7606–7630. https://doi.org/10.1002/anie.201601116. Epub 2016 May 25. Review. PMID: 27226395

    Article  PubMed  CAS  Google Scholar 

  38. Groeneweg S, Visser WE, Visser TJ (2017) Disorder of thyroid hormone transport into the tissues. Best Pract Res Clin Endocrinol Metab 31(2):241–253. https://doi.org/10.1016/j.beem.2017.05.001. Epub 2017 May 24

    Article  PubMed  CAS  Google Scholar 

  39. Bernal J, Guadaño-Ferraz A, Morte B (2015) Thyroid hormone transporters—functions and clinical implications. Nat Rev Endocrinol 11(7):406–417. https://doi.org/10.1038/nrendo.2015.66. Epub 2015 May 5. Review.

    Article  PubMed  CAS  Google Scholar 

  40. Zada D, Blitz E, Appelbaum L (2017) Zebrafish—an emerging model to explore thyroid hormone transporters and psychomotor retardation. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.03.004. [Epub ahead of print] PMID: 28274736

  41. Hoefig CS, Zucchi R, Köhrle J (2016) Thyronamines and derivatives: physiological relevance, pharmacological actions, and future research directions. Thyroid 26(12):1656–1673. Epub 2016 Nov 9. PMID: 27650974

    Article  PubMed  CAS  Google Scholar 

  42. Gross J, Pitt-Rivers R (1952) The identification of 3:5:3′-L-triiodothyronine in human plasma. Lancet 1(6705):439–441. PMID: 14898765

    Article  PubMed  CAS  Google Scholar 

  43. Hird F Jr, Trikojus VM (1948) Paper partition chromatography with thyroxine and analogues. Aust J Sci 10(6):185–187. PMID: 18875255

    PubMed  CAS  Google Scholar 

  44. Sap J, Muñoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennström B (1986) The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324(6098):635–640. PMID: 2879242

    Article  PubMed  CAS  Google Scholar 

  45. Di Jeso B, Arvan P (2016) Thyroglobulin from molecular and cellular biology to clinical endocrinology. Endocr Rev 37(1):2–36. https://doi.org/10.1210/er.2015-1090. Epub 2015 Nov 23. Review. PMID: 26595189

    Article  PubMed  CAS  Google Scholar 

  46. Braverman LE (1994) Deiodination of thyroid hormones. A 30 year perspective (Berthold Memorial Award Lecture 1994). Exp Clin Endocrinol 102(5):355–363

    Article  PubMed  CAS  Google Scholar 

  47. Köhrle J (1999) Local activation and inactivation of thyroid hormones: the deiodinase family. Mol Cell Endocrinol 151(1–2):103–119. Review. PMID: 10411325

    Article  PubMed  Google Scholar 

  48. Gereben B, Zeöld A, Dentice M, Salvatore D, Bianco AC (2008) Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci 65(4):570–590. Review. PMID: 17989921

    Article  PubMed  CAS  Google Scholar 

  49. Peeters RP, Visser TJ (2017) Metabolism of thyroid hormone. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A (eds) Endotext [Internet]. MDText.com, South Dartmouth, MA. PMID: 25905401

    Google Scholar 

  50. Schweizer U, Schlicker C, Braun D, Köhrle J, Steegborn C (2014) Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism. Proc Natl Acad Sci U S A 111(29):10526–10531. https://doi.org/10.1073/pnas.1323873111. Epub 2014 Jul 7. PMID: 25002520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Köhrle J (2002) Iodothyronine deiodinases. Methods Enzymol 347:125–167

    Article  PubMed  Google Scholar 

  52. Renko K, Hoefig CS, Hiller F, Schomburg L, Köhrle J (2012) Identification of iopanoic acid as substrate of type 1 deiodinase by a novel nonradioactive iodide-release assay. Endocrinology 153(5):2506–2513. https://doi.org/10.1210/en.2011-1863. Epub 2012 Mar 20. PubMed PMID: 22434082

    Article  PubMed  CAS  Google Scholar 

  53. Renko K, Schäche S, Hoefig CS, Welsink T, Schwiebert C, Braun D, Becker NP, Köhrle J, Schomburg L (2015) An improved nonradioactive screening method identifies genistein and xanthohumol as potent inhibitors of iodothyronine deiodinases. Thyroid 25(8):962–968. https://doi.org/10.1089/thy.2015.0058. Epub 2015 Jun 25. PubMed PMID: 25962824

    Article  PubMed  CAS  Google Scholar 

  54. Rijntjes E, Scholz PM, Mugesh G, Köhrle J (2013) Se- and s-based thiouracil and methimazole analogues exert different inhibitory mechanisms on type 1 and type 2 deiodinases. Eur Thyroid J 2(4):252–258. https://doi.org/10.1159/000355288. Epub 2013 Nov 27. PubMed PMID: 24783056. PubMed Central PMCID: PMC3923599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dentice M, Salvatore D (2011) Deiodinases: the balance of thyroid hormone: local impact of thyroid hormone inactivation. J Endocrinol 209(3):273–282. https://doi.org/10.1530/JOE-11-0002. Epub 2011 Mar 11. Review. PMID: 21398344

    Article  PubMed  CAS  Google Scholar 

  56. Schweizer U, Towell H, Vit A, Rodriguez-Ruiz A, Steegborn C (2017) Structural aspects of thyroid hormone binding to proteins and competitive interactions with natural and synthetic compounds. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.01.026. [Epub ahead of print] PMID: 28131741

  57. Welsh KJ, Soldin SJ (2016) Diagnosis of endocrine disease: how reliable are free thyroid and total T3 hormone assays? Eur J Endocrinol 175(6):R255–R263. Review. PMID: 27737898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Spencer CA (2017) Assay of thyroid hormones and related substances. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A (eds) Endotext [Internet]. MDText.com, South Dartmouth, MA. PMID: 2590533

    Google Scholar 

  59. Faix JD (2013) Principles and pitfalls of free hormone measurements. Best Pract Res Clin Endocrinol Metab 27(5):631–645. https://doi.org/10.1016/j.beem.2013.06.007. Epub 2013 Jul 17. Review. PMID: 24094635

    Article  PubMed  CAS  Google Scholar 

  60. Engler D, Burger AG (1984) The deiodination of the iodothyronines and of their derivatives in man. Endocr Rev 5(2):151–184. Review. No abstract available. PMID: 6376077

    Article  PubMed  CAS  Google Scholar 

  61. Burger A, Reinharz A, Ingbar SH (1975) High-affinity binding of tetraiodothyroacetic acid by a prealbumin in normal rabbit serum. Endocrinology 97(4):919–923

    Article  PubMed  CAS  Google Scholar 

  62. Davis PJ, Sudha T, Lin HY, Mousa SA (2015) Thyroid hormone, hormone analogs, and angiogenesis. Compr Physiol 6(1):353–362. https://doi.org/10.1002/cphy.c150011. Review. PMID: 26756636

    Article  PubMed  Google Scholar 

  63. Schmohl KA, Müller AM, Wechselberger A, Rühland S, Salb N, Schwenk N, Heuer H, Carlsen J, Göke B, Nelson PJ, Spitzweg C (2015) Thyroid hormones and tetrac: new regulators of tumour stroma formation via integrin αvβ3. Endocr Relat Cancer 22(6):941–952. https://doi.org/10.1530/ERC-15-0245. Epub 2015 Aug 25

    Article  PubMed  CAS  Google Scholar 

  64. Menegay C, Juge C, Burger AG (1989) Pharmacokinetics of 3,5,3′-triiodothyroacetic acid and its effects on serum TSH levels. Acta Endocrinol (Copenh) 121(5):651–658. PMIC: 2588936

    Article  CAS  Google Scholar 

  65. Kersseboom S, Horn S, Visser WE, Chen J, Friesema EC, Vaurs-Barrière C, Peeters RP, Heuer H, Visser TJ (2014) In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency. Mol Endocrinol 28(12):1961–1970. https://doi.org/10.1210/me.2014-1135. PMID: 25389909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Cody V (1988) Thyroid hormone structure-activity relationships: molecular structure of 3,5,3′-triiodothyropropionic acid. Endocr Res 14(2–3):165–176

    Article  PubMed  CAS  Google Scholar 

  67. Wood WJ, Geraci T, Nilsen A, DeBarber AE, Scanlan TS (2009) Iodothyronamines are oxidatively deaminated to iodothyroacetic acids in vivo. Chembiochem 10(2):361–365. https://doi.org/10.1002/cbic.200800607. PMID:19105176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Hackenmueller SA, Scanlan TS (2012) Identification and quantification of 3-iodothyronamine metabolites in mouse serum using liquid chromatography-tandem mass spectrometry. J Chromatogr A 1256:89–97. https://doi.org/10.1016/j.chroma.2012.07.052. Epub 2012 Jul 25. PMID: 22885046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Richards KH, Schanze N, Monk R, Rijntjes E, Rathmann D, Köhrle J (2017) A validated LC-MS/MS method for cellular thyroid hormone metabolism: uptake and turnover of mono-iodinated thyroid hormone metabolites by PCCL3 thyrocytes. PLoS One 12(8):e0183482. https://doi.org/10.1371/journal.pone.0183482. eCollection 2017. PMID: 28837607

    Article  PubMed  PubMed Central  Google Scholar 

  70. Laurino A, De Siena G, Resta F, Masi A, Musilli C, Zucchi R, Raimondi L (2015) 3-iodothyroacetic acid, a metabolite of thyroid hormone, induces itch and reduces threshold to noxious and to painful heat stimuli in mice. Br J Pharmacol 172(7):1859–1868. doi: https://doi.org/10.1111/bph.13032. Epub 2015 Jan 23. PMID: 25439265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Schanze N, Jacobi SF, Rijntjes E, Mergler S, Del Olmo M, Hoefig CS, Khajavi N, Lehmphul I, Biebermann H, Mittag J, Köhrle J (2017) 3-iodothyronamine decreases expression of genes involved in iodide metabolism in mouse thyroids and inhibits iodide uptake in PCCL3 thyrocytes. Thyroid 27(1):11–22. https://doi.org/10.1089/thy.2016.0182. Epub 2016 Dec 21. PMID: 27788620

    Article  PubMed  CAS  Google Scholar 

  72. Lehmphul I, Hoefig CS, Köhrle J (2017) 3-Iodothyronamine reduces insulin secretion in vitro via a mitochondrial mechanism. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.07.026. [Epub ahead of print] PMID: 28754352

  73. Hoefig CS, Jacobi SF, Warner A, Harder L, Schanze N, Vennström B, Mittag J (2015) 3-iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo. Br J Pharmacol 172(13):3426–3433. https://doi.org/10.1111/bph.13131. Epub 2015 Jun 9. PMID: 25765843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U, Mittag J, Köhrle J (2015) Biosynthesis of 3-iodothyronamine from T4 in murine intestinal tissue. Endocrinology 156(11):4356–4364. https://doi.org/10.1210/en.2014-1499. Epub 2015 Sep 8. PMID:26348473

    Article  PubMed  CAS  Google Scholar 

  75. Glossmann HH, Lutz OMD (2017) Torpor: the rise and fall of 3-monoiodothyronamine from brain to gut—from gut to brain? Front Endocrinol (Lausanne) 8:118. https://doi.org/10.3389/fendo.2017.00118. PMCID: PMC5450037

    Article  Google Scholar 

  76. Dratman MB (1974) On the mechanism of action of thyroxin, an amino acid analog of tyrosine. J Theor Biol 46:255–270

    Article  PubMed  CAS  Google Scholar 

  77. Hoefig CS, Renko K, Piehl S, Scanlan TS, Bertoldi M, Opladen T, Hoffmann GF, Klein J, Blankenstein O, Schweizer U, Köhrle J (2012) Does the aromatic L-amino acid decarboxylase contribute to thyronamine biosynthesis? Mol Cell Endocrinol 349(2):195–201. https://doi.org/10.1016/j.mce.2011.10.024. Epub 2011 Oct 28. PMID: 22061622

    Article  PubMed  CAS  Google Scholar 

  78. Meyer T, Hesch RD (1983) Triiodothyronamine—a beta-adrenergic metabolite of triiodothyronine? Horm Metab Res 15(12):602–606

    Article  PubMed  CAS  Google Scholar 

  79. Cody V, Meyer T, Dohler KD, Hesch RD, Rokos H, Marko M (1984) Molecular structure and biochemical activity of 3,5,3′-triiodothyronamine. Endocr Res 10(2):91–99

    Article  PubMed  CAS  Google Scholar 

  80. Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10(6):638–642. Epub 2004 May 16. PMID: 15146179

    Article  PubMed  CAS  Google Scholar 

  81. Hoefig CS, Köhrle J, Brabant G, Dixit K, Yap B, Strasburger CJ, Wu Z (2011) Evidence for extrathyroidal formation of 3-iodothyronamine in humans as provided by a novel monoclonal antibody-based chemiluminescent serum immunoassay. J Clin Endocrinol Metab 96(6):1864–1872. https://doi.org/10.1210/jc.2010-2680. Epub 2011 Apr 13. PMID: 21490071

    Article  PubMed  CAS  Google Scholar 

  82. Galli E, Marchini M, Saba A, Berti S, Tonacchera M, Vitti P, Scanlan TS, Iervasi G, Zucchi R (2012) Detection of 3-iodothyronamine in human patients: a preliminary study. J Clin Endocrinol Metab 97(1):E69–E74. https://doi.org/10.1210/jc.2011-1115. Epub 2011 Oct 26. PMID: 22031514

    Article  PubMed  CAS  Google Scholar 

  83. Chiellini G, Nesi G, Digiacomo M, Malvasi R, Espinoza S, Sabatini M, Frascarelli S, Laurino A, Cichero E, Macchia M, Gainetdinov RR, Fossa P, Raimondi L, Zucchi R, Rapposelli S (2015) Design, synthesis, and evaluation of thyronamine analogues as novel potent mouse trace amine associated receptor 1 (mTAAR1) agonists. J Med Chem 58(12):5096–5107. https://doi.org/10.1021/acs.jmedchem.5b00526. Epub 2015 Jun 5. PMID: 26010728

    Article  PubMed  CAS  Google Scholar 

  84. Chiellini G, Bellusci L, Sabatini M, Zucchi R (2017) Thyronamines and analogues—the route from rediscovery to translational research on thyronergic amines. Mol Cell Endocrinol 458:149–155. https://doi.org/10.1016/j.mce.2017.01.002. [Epub ahead of print] PMID: 28069535

    Article  PubMed  CAS  Google Scholar 

  85. Khajavi N, Mergler S, Biebermann H (2017) 3-Iodothyronamine, a novel endogenous modulator of transient receptor potential melastatin 8? Front Endocrinol 8:198

    Article  Google Scholar 

  86. Visser TJ (1996) Pathways of thyroid hormone metabolism. Acta Med Austriaca 23(1–2):10–16. Review. PMID: 8767510

    PubMed  CAS  Google Scholar 

  87. Visser TJ, Rutgers M, de Herder WW, Rooda SJ, Hazenberg MP (1988) Hepatic metabolism, biliary clearance and enterohepatic circulation of thyroid hormone. Acta Med Austriaca 15(Suppl 1):37–39. Review. PMID: 3051833

    PubMed  Google Scholar 

  88. Pietsch CA, Scanlan TS, Anderson RJ (2007) Thyronamines are substrates for human liver sulfotransferases. Endocrinology 148(4):1921–1927. Epub 2007 Jan 4. PMID: 17204552

    Article  PubMed  CAS  Google Scholar 

  89. Polk DH, Reviczky A, Wu SY, Huang WS, Fisher DA (1994) Metabolism of sulfoconjugated thyroid hormone derivatives in developing sheep. Am J Phys 266(6 Pt 1):E892–E896

    CAS  Google Scholar 

  90. van der Spek AH, Fliers E, Boelen A (2017) The classic pathways of thyroid hormone metabolism. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.01.025. [Epub ahead of print] PMID: 28109953

  91. Buitendijk M, Galton VA (2012) Is the kidney a major storage site for thyroxine as thyroxine glucuronide? Thyroid 22(2):187–191. https://doi.org/10.1089/thy.2011.0307. Epub 2011 Dec 16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Sarne D (2016) Effects of the environment, chemicals and drugs on thyroid function endotext. In: De Groot LJ, Chrousos G, Dungan K et al (eds) MDText.com, South Dartmouth, MA. Last update: 27 Sept 2016

    Google Scholar 

  93. Moreno M, Giacco A, Di Munno C, Goglia F (2017) Direct and rapid effects of 3,5-diiodo-L-thyronine (T2). Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.02.012. [Epub ahead of print] PMID: 28192176

  94. Hernandez A (2015) 3,5-diiodo-L-thyronine (t2) in dietary supplements: what are the physiological effects? Endocrinology 156(1):5–7. https://doi.org/10.1210/en.2014-1933. No abstract available. PMID: 25526549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Horst C, Rokos H, Seitz HJ (1989) Rapid stimulation of hepatic oxygen consumption by 3,5-di-iodo-L-thyronine. Biochem J 261(3):945–950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Goglia F (2015) The effects of 3,5-diiodothyronine on energy balance. Front Physiol 5:528. https://doi.org/10.3389/fphys.2014.00528. eCollection 2014. No abstract available. PMID: 25628573

    Article  PubMed  PubMed Central  Google Scholar 

  97. van der Valk F, Hassing C, Visser M, Thakkar P, Mohanan A, Pathak K, Dutt C, Chauthaiwale V, Ackermans M, Nederveen A, Serlie M, Nieuwdorp M, Stroes E (2014) The effect of a diiodothyronine mimetic on insulin sensitivity in male cardiometabolic patients: a double-blind randomized controlled trial. PLoS One 9(2):e86890. https://doi.org/10.1371/journal.pone.0086890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Goldberg IJ, Huang LS, Huggins LA, Yu S, Nagareddy PR, Scanlan TS, Ehrenkranz JR (2012) Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology 153(11):5143–5149. https://doi.org/10.1210/en.2012-1572. Epub 2012 Sep 4. PMID: 22948212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Padron AS, Neto RA, Pantaleão TU, de Souza dos Santos MC, Araujo RL, de Andrade BM, da Silva Leandro M, de Castro JP, Ferreira AC, de Carvalho DP (2014) Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J Endocrinol 221(3):415–427. https://doi.org/10.1530/JOE-13-0502. Epub 2014 Apr 1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Jonas W, Lietzow J, Wohlgemuth F, Hoefig CS, Wiedmer P, Schweizer U, Köhrle J, Schürmann A (2015) 3,5-Diiodo-L-thyronine (3,5-T2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 156(1):389–399. https://doi.org/10.1210/en.2014-1604. PMID: 25322465

    Article  PubMed  CAS  Google Scholar 

  101. Lietzow J, Golchert J, Homuth G, Völker U, Jonas W, Köhrle J (2016) 3,5-T2 alters murine genes relevant for xenobiotic, steroid, and thyroid hormone metabolism. J Mol Endocrinol 56(4):311–323. https://doi.org/10.1530/JME-15-0159. Epub 2016 Feb 22. PMID: 26903510

    Article  PubMed  CAS  Google Scholar 

  102. Damiano F, Rochira A, Gnoni A, Siculella L (2017) Action of thyroid hormones, T3 and T2, on hepatic fatty acids: differences in metabolic effects and molecular mechanisms. Int J Mol Sci 18(4):pii: E744. https://doi.org/10.3390/ijms18040744

    Article  CAS  Google Scholar 

  103. da Silva Teixeira S, Filgueira C, Sieglaff DH, Benod C, Villagomez R, Minze LJ, Zhang A, Webb P, Nunes MT (2017) 3,5-diiodothyronine (3,5-T2) reduces blood glucose independently of insulin sensitization in obese mice. Acta Physiol (Oxf) 220(2):238–250. https://doi.org/10.1111/apha.12821. PMID: 27770485

    Article  CAS  Google Scholar 

  104. Moreno M, Silvestri E, Coppola M, Goldberg IJ, Huang LS, Salzano AM, D'Angelo F, Ehrenkranz JR, Goglia F (2016) 3,5,3′-Triiodo-L-thyronine- and 3,5-diiodo-L-thyronine-affected metabolic pathways in liver of LDL receptor deficient mice. Front Physiol 7:545

    PubMed  PubMed Central  Google Scholar 

  105. Orozco A, Lazcano I, Hernández-Puga G, Olvera A (2017) Non-mammalian models reveal the role of alternative ligands for thyroid hormone receptors. Mol Cell Endocrinol 459:59–63. https://doi.org/10.1016/j.mce.2017.03.003. [Epub ahead of print] PMID: 28267601

    Article  PubMed  CAS  Google Scholar 

  106. Hernández-Puga G, Mendoza A, León-Del-Río A, Orozco A (2017) Jab1 is a T2-dependent coactivator or a T3-dependent corepressor of TRB1-mediated gene regulation. J Endocrinol 232(3):451–459. https://doi.org/10.1530/JOE-16-0485. Epub 2017 Jan 4. PMID: 28053002

    Article  PubMed  Google Scholar 

  107. Lehmphul I, Brabant G, Wallaschofski H, Ruchala M, Strasburger CJ, Köhrle J, Wu Z (2014) Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody-based chemiluminescence immunoassay. Thyroid 24(9):1350–1360. https://doi.org/10.1089/thy.2013.0688. Epub 2014 Aug 1. PMID: 24967815

    Article  PubMed  CAS  Google Scholar 

  108. Pietzner M, Lehmphul I, Friedrich N, Schurmann C, Ittermann T, Dörr M, Nauck M, Laqua R, Völker U, Brabant G, Völzke H, Köhrle J, Homuth G, Wallaschofski H (2015) Translating pharmacological findings from hypothyroid rodents to euthyroid humans: is there a functional role of endogenous 3,5-T2? Thyroid 25(2):188–197. https://doi.org/10.1089/thy.2014.0262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Pietzner M, Homuth G, Budde K, Lehmphul I, Völker U, Völzke H, Nauck M, Köhrle J, Friedrich N (2015) Urine metabolomics by (1)H-NMR spectroscopy indicates associations between serum 3,5-t2 concentrations and intermediary metabolism in euthyroid humans. Eur Thyroid J 4(Suppl 1):92–100. https://doi.org/10.1159/000381308. Epub 2015 May 28. PMID: 26601079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Massolt ET, van der Windt M, Korevaar TI, Kam BL, Burger JW, Franssen GJ, Lehmphul I, Köhrle J, Visser WE, Peeters RP (2016) Thyroid hormone and its metabolites in relation to quality of life in patients treated for differentiated thyroid cancer. Clin Endocrinol 85(5):781–788. https://doi.org/10.1111/cen.13101. Epub 2016 Jun 13. PMID: 27175823

    Article  CAS  Google Scholar 

  111. Langouche L, Lehmphul I, Perre SV, Köhrle J, Van den Berghe G (2016) Circulating 3-T1AM and 3,5-T2 in critically ill patients: a cross-sectional observational study. Thyroid 26(12):1674–1680. Epub 2016 Oct 25. PMID: 27676423

    Article  PubMed  CAS  Google Scholar 

  112. Dietrich JW, Müller P, Schiedat F, Schlömicher M, Strauch J, Chatzitomaris A, Klein HH, Mügge A, Köhrle J, Rijntjes E, Lehmphul I (2015) Nonthyroidal illness syndrome in cardiac illness involves elevated concentrations of 3,5-diiodothyronine and correlates with atrial remodeling. Eur Thyroid J. 4(2):129–137. https://doi.org/10.1159/000381543. Epub 2015 May 23. PMID: 26279999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wu SY, Huang WS, Ho E, Wu ES, Fisher DA (2007) Compound W, a 3,3′-diiodothyronine sulfate cross-reactive substance in serum from pregnant women—a potential marker for fetal thyroid function. Pediatr Res 61(3):307–312. PMID: 17314688

    Article  PubMed  CAS  Google Scholar 

  114. Chen D, Yu H, Bao J, Xue W, Xing Y, Zhang L, Green WL, Fisher DA, Wu SY (2012) 3,3′-diiodothyronine sulfate cross-reactive material (compound W) in human newborns. Pediatr Res 72(5):521–524. https://doi.org/10.1038/pr.2012.116. Epub 2012 Aug 20. PMID: 22907618

    Article  PubMed  CAS  Google Scholar 

  115. Brabant G, Brabant A, Ranft U, Ocran K, Köhrle J, Hesch RD, von zur Mühlen A (1987) Circadian and pulsatile thyrotropin secretion in euthyroid man under the influence of thyroid hormone and glucocorticoid administration. J Clin Endocrinol Metab 65(1):83–88. PMID: 3584402

    Article  PubMed  CAS  Google Scholar 

  116. Russell W, Harrison RF, Smith N, Darzy K, Shalet S, Weetman AP, Ross RJ (2008) Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J Clin Endocrinol Metab 93(6):2300–2306. https://doi.org/10.1210/jc.2007-2674. Epub 2008 Mar 25. PMID: 18364382

    Article  PubMed  CAS  Google Scholar 

  117. Ehrenkranz J, Bach PR, Snow GL, Schneider A, Lee JL, Ilstrup S, Bennett ST, Benvenga S (2015) Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid 25(8):954–961. https://doi.org/10.1089/thy.2014.0589. PMID: 26061389

    Article  PubMed  CAS  Google Scholar 

  118. Richards K, Rijntjes E, Rathmann D, Köhrle J (2017) Avoiding the pitfalls when quantifying thyroid hormones and their metabolites using mass spectrometric methods: the role of quality assurance. Mol Cell Endocrinol 458:44–56. https://doi.org/10.1016/j.mce.2017.01.032

    Article  PubMed  CAS  Google Scholar 

  119. Rathmann D, Rijntjes E, Lietzow J, Köhrle J (2015) Quantitative analysis of thyroid hormone metabolites in cell culture samples using LC-MS/MS. Eur Thyroid J 4(Suppl 1):51–58. https://doi.org/10.1159/000430840. Epub 2015 May 28.PMID: 26601073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Álvarez E, Madrid Y, Marazuela MD (2017) Comparison of sample preparation strategies for target analysis of total thyroid hormones levels in serum by liquid chromatography-quadrupole time-of-flight-mass spectrometry. Talanta 164:570–579. https://doi.org/10.1016/j.talanta.2016.12.001. Epub 2016 Dec 2. PMID: 28107975

    Article  PubMed  CAS  Google Scholar 

  121. Villanger GD, Learner E, Longnecker MP, Ask H, Aase H, Zoeller RT, Knudsen GP, Reichborn-Kjennerud T, Zeiner P, Engel SM (2017) Effects of sample handling and analytical procedures on thyroid hormone concentrations in pregnant women's plasma. Epidemiology 28(3):365–369. https://doi.org/10.1097/EDE.0000000000000606. PMID: 27984425

    Article  PubMed  PubMed Central  Google Scholar 

  122. Noyes PD, Lema SC, Roberts SC, Cooper EM, Stapleton HM (2014) Rapid method for the measurement of circulating thyroid hormones in low volumes of teleost fish plasma by LC-ESI/MS/MS. Anal Bioanal Chem 406(3):715–726. https://doi.org/10.1007/s00216-013-7528-3. Epub 2013 Dec 18. PMID:24343452

    Article  PubMed  CAS  Google Scholar 

  123. Saba A, Donzelli R, Colligiani D, Raffaelli A, Nannipieri M, Kusmic C, Dos Remedios CG, Simonides WS, Iervasi G, Zucchi R (2014) Quantification of thyroxine and 3,5,3′-triiodo-thyronine in human and animal hearts by a novel liquid chromatography-tandem mass spectrometry method. Horm Metab Res 46(9):628–634. https://doi.org/10.1055/s-0034-1368717. Epub 2014 Mar 3. PMID: 24591048

    Article  PubMed  CAS  Google Scholar 

  124. Kiebooms JA, Wauters J, Vanden Bussche J, Vanhaecke L (2014) Validated ultra high performance liquid chromatography-tandem mass spectrometry method for quantitative analysis of total and free thyroid hormones in bovine serum. J Chromatogr A 1345:164–173. https://doi.org/10.1016/j.chroma.2014.04.032. Epub 2014 Apr 18. PMID: 24786658

    Article  PubMed  CAS  Google Scholar 

  125. Sakai H, Nagao H, Sakurai M, Okumura T, Nagai Y, Shikuma J, Ito R, Imazu T, Miwa T, Odawara M (2015) Correlation between serum levels of 3,3′,5′-triiodothyronine and thyroid hormones measured by liquid chromatography-tandem mass spectrometry and immunoassay. PLoS One 10(10):e0138864. https://doi.org/10.1371/journal.pone.0138864. PMID: 26426328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. De Angelis M, Giesert F, Finan B, Clemmensen C, Müller TD, Vogt-Weisenhorn D, Tschöp MH, Schramm KW (2016) Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography-mass spectrometry method. J Chromatogr B Analyt Technol Biomed Life Sci 1033-1034:413–420. https://doi.org/10.1016/j.jchromb.2016.08.037. Epub 2016 Aug 26. PMID: 27649501

    Article  PubMed  CAS  Google Scholar 

  127. Bussy U, Chung-Davidson YW, Li K, Fissette SD, Buchinger EG, Li W (2017) A validated LC-MS/MS method for thyroid hormone determination in sea lamprey (Petromyzon marinus) plasma, gill, kidney and liver. J Chromatogr B Analyt Technol Biomed Life Sci 1041-1042:77–84. https://doi.org/10.1016/j.jchromb.2016.12.024. Epub 2016 Dec 19. PMID: 28012382

    Article  PubMed  CAS  Google Scholar 

  128. Finan B, Clemmensen C, Zhu Z, Stemmer K, Gauthier K, Müller L, De Angelis M, Moreth K, Neff F, Perez-Tilve D, Fischer K, Lutter D, Sánchez-Garrido MA, Liu P, Tuckermann J, Malehmir M, Healy ME, Weber A, Heikenwalder M, Jastroch M, Kleinert M, Jall S, Brandt S, Flamant F, Schramm KW, Biebermann H, Döring Y, Weber C, Habegger KM, Keuper M, Gelfanov V, Liu F, Köhrle J, Rozman J, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Hofmann SM, Yang B, Tschöp MH, DiMarchi R, Müller TD (2016) Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 167(3):843–857.e14. https://doi.org/10.1016/j.cell.2016.09.014. Epub 2016 Oct 6. PMID: 27720451

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work has been supported by grants of the DFG funded Priority Programme 1629 “ThyroidTransAct” (Ko-922/16-2 and 17-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Köhrle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Köhrle, J. (2018). Thyroid Hormones and Derivatives: Endogenous Thyroid Hormones and Their Targets. In: Plateroti, M., Samarut, J. (eds) Thyroid Hormone Nuclear Receptor. Methods in Molecular Biology, vol 1801. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7902-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7902-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7901-1

  • Online ISBN: 978-1-4939-7902-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics