Skip to main content

A Quantitative Systems Pharmacology Approach to Infer Pathways Involved in Complex Disease Phenotypes

  • Protocol
  • First Online:
Phenotypic Screening

Abstract

Designing effective therapeutic strategies for complex diseases such as cancer and neurodegeneration that involve tissue context-specific interactions among multiple gene products presents a major challenge for precision medicine. Safe and selective pharmacological modulation of individual molecular entities associated with a disease often fails to provide efficacy in the clinic. Thus, development of optimized therapeutic strategies for individual patients with complex diseases requires a more comprehensive, systems-level understanding of disease progression. Quantitative systems pharmacology (QSP) is an approach to drug discovery that integrates computational and experimental methods to understand the molecular pathogenesis of a disease at the systems level more completely. Described here is the chemogenomic component of QSP for the inference of biological pathways involved in the modulation of the disease phenotype. The approach involves testing sets of compounds of diverse mechanisms of action in a disease-relevant phenotypic assay, and using the mechanistic information known for the active compounds, to infer pathways and networks associated with the phenotype. The example used here is for monogenic Huntington’s disease (HD), which due to the pleiotropic nature of the mutant phenotype has a complex pathogenesis. The overall approach, however, is applicable to any complex disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern AM, Schurdak ME, Bahar I, Berg JM, Taylor DL (2016) A perspective on implementing a quantitative systems pharmacology platform for drug discovery and the advancement of personalized medicine. J Biomol Screen 21:521–534

    Article  CAS  Google Scholar 

  2. Sorger PK, Allerheiligen SRB, Abernethy DR, Altman RB, Brouwer KLR, Califano A et al. (2011) Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms. NIH White Paper, QSP Workshop Group

    Google Scholar 

  3. Taylor DL (2012) A new vision of drug discovery and development. European Pharmaceutical Review 17(6)

    Google Scholar 

  4. Gough A, Shun TY, Taylor DL, Schurdak M (2016) A metric and workflow for quality control in the analysis of heterogeneity in phenotypic profiles and screens. Methods 96:12–26

    Article  CAS  Google Scholar 

  5. Gough AH, Chen N, Shun TY, Lezon TR, Boltz RC, Reese CE et al (2014) Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery. PLoS One 9:e102678

    Article  Google Scholar 

  6. Bredel M, Jacoby E (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 5:262–275

    Article  CAS  Google Scholar 

  7. Haggarty SJ, Clemons PA, Schreiber SL (2003) Chemical genomic profiling of biological networks using graph theory and combinations of small molecule perturbations. J Am Chem Soc 125:10543–10545

    Article  CAS  Google Scholar 

  8. Harris CJ, Stevens AP (2006) Chemogenomics: structuring the drug discovery process to gene families. Drug Discov Today 11:880–888

    Article  CAS  Google Scholar 

  9. Wagner BK, Schreiber SL (2016) The power of sophisticated phenotypic screening and modern mechanism-of-action methods. Cell Chem Biol 23:3–9

    Article  CAS  Google Scholar 

  10. Pei F, Li H, Henderson MJ, Titus SA, Jadhv A, Simeonov A et al. (2017) Connecting Neuronal Cell Protective Pathways and Drug Combinations in a Huntington's Disease Model through the Application of Quantitative Systems Pharmacology. Scientific Reports 7:17803

    Google Scholar 

  11. Trettel F (2000) Dominant phenotypes produced by the HD mutation in STHdhQ111 striatal cells. Hum Mol Genet 9:2799–2809

    Article  CAS  Google Scholar 

  12. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  CAS  Google Scholar 

  13. Zhao W, Sachsenmeier K, Zhang L, Sult E, Hollingsworth RE, Yang H (2014) A new bliss independence model to analyze drug combination data. J Biomol Screen 19:817–821

    Article  Google Scholar 

  14. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  Google Scholar 

  15. Chou TC, Talalay P (1981) Generalized equations for the analysis of inhibitions of Michaelis-Menten and higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. FEBS J 115:207–216

    CAS  Google Scholar 

  16. Buchser W, Collins M, Garyantes T, Guha R, Haney S, Lemmon V et al (2004) Assay development guidelines for image-based high content screening, high content analysis and high content imaging. In: Sittampalam GS, Coussens NP, Brimacombe K et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD

    Google Scholar 

  17. Bray MA, Carpenter A (2004) Advanced assay development guidelines for image-based high content screening and analysis. In: Sittampalam GS, Coussens NP, Brimacombe K et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Laura Vollmer and Seia Comsa for their technical assistance in developing the HD propidium iodide assay, and Tongying Shun for her assistance with the compound combination analysis. This work was supported by funds from the University of Pittsburgh Brain Institute (Taylor/Stern), PA Commonwealth grants SAP#4100054875 (Taylor) and SAP#4100068731 (Stern), and NIH R01NS039324 (Friedlander).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Schurdak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schurdak, M.E. et al. (2018). A Quantitative Systems Pharmacology Approach to Infer Pathways Involved in Complex Disease Phenotypes. In: Wagner, B. (eds) Phenotypic Screening. Methods in Molecular Biology, vol 1787. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7847-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7847-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7846-5

  • Online ISBN: 978-1-4939-7847-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics