Skip to main content

Large-Brained Animal Models of Huntington’s Disease: Sheep

  • Protocol
  • First Online:
Huntington’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

The limitations of using small-brained rodents to model diseases that affect large-brain humans are becoming increasingly obvious as novel therapies emerge. Huntington’s disease (HD) is one such disease. In recent years, the desirability of a large-brained, long-lived animal model of HD for preclinical testing has changed into a necessity. Treatment involving gene therapy in particular presents delivery challenges that are currently unsolved. Models using long-lived, large-brained animals would be useful, not only for refining methods of delivery (particularly for gene and other therapies that do not involve small molecules) but also for measuring long-term “off-target” effects, and assessing the efficacy of therapies. With their large brains and convoluted cortices, sheep are emerging as feasible experimental subjects that can be used to bridge the gap between rodents and humans in preclinical drug development. Sheep are readily available, economical to use, and easy to care for in naturalistic settings. With brains of a similar size to a large rhesus macaque, they have much to offer. The only thing that was missing until recently was the means of testing their neurological function and behavior using approaches and methods that are relevant to HD. In this chapter, I will outline the present and future possibilities of using sheep and testing as large animal models of HD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morton AJ, Howland DS (2013) Large genetic animal models of Huntington’s disease. J Huntingtons Dis 2:3–19

    PubMed  Google Scholar 

  2. Cooley RK, Vanderwolf CH (2004) The sheep brain: a basic guide. A.J. Kirby Co., London, Canada

    Google Scholar 

  3. Jacobsen JC, Bawden CS, Rudiger SR et al (2010) An ovine transgenic Huntington’s disease model. Hum Mol Genet 19:1873–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14:708–721

    Article  CAS  PubMed  Google Scholar 

  5. Menalled L, El-Khodor BF, Patry M et al (2011) Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models. Neurobiol Dis 35:319–336

    Article  CAS  Google Scholar 

  6. Chiang C, Jacobsen JC, Ernst C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huntington’s Disease Sheep Collaborative Research Group (2013) Further molecular characterisation of the OVT73 transgenic sheep model of Huntington’s disease identifies cortical aggregates. J Huntingtons Dis 2:279–295

    Google Scholar 

  8. Handley RR, Reid SJ et al (2013) Metabolic disruption identified in the Huntington's disease transgenic sheep model. Sci Rep. https://doi.org/10.1038/srep20681

  9. Handley RR, Reid SJ, Patassini S et al (2016) Metabolic disruption identified in the Huntington’s disease transgenic sheep model. Sci Rep 6:20681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. DiFiglia M, Sapp E, Chase KO et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993

    Article  CAS  PubMed  Google Scholar 

  11. Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  CAS  PubMed  Google Scholar 

  12. Skene DJ, Middleton B, Fraser CF et al (2017) Metabolic profiling of presymptomatic Huntington’s disease sheep reveals novel biomarkers. Sci Rep 7:43030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patassini S, Begley P, Xu J et al (2016) Metabolite mapping reveals severe widespread perturbation of multiple metabolic processes in Huntington’s disease human brain. Biochim Biophys Acta 1862:1650–1662

    Article  CAS  PubMed  Google Scholar 

  14. van der Burg JM, Bacos K, Wood NI et al (2008) Increased metabolism in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 29:41–51

    Article  CAS  PubMed  Google Scholar 

  15. Morton AJ, Wood NI, Hastings MH et al (2005) Disintegration of the sleep-wake cycle and circadian timing in Huntington’s disease. J Neurosci 25:157–163

    Article  CAS  PubMed  Google Scholar 

  16. Kudo T, Schroeder A, Loh DH et al (2011) Dysfunctions in circadian behavior and physiology in mouse models of Huntington’s disease. Exp Neurol 228:80–90

    Article  CAS  PubMed  Google Scholar 

  17. Morton AJ (2013) Circadian and sleep disorder in Huntington’s disease. Exp Neurol 243:34–44

    Article  PubMed  Google Scholar 

  18. Morton AJ, Rudiger SR, Wood NI et al (2014) Early and progressive circadian abnormalities in Huntington’s disease sheep are unmasked by social environment. Hum Mol Genet 23:3375–3383

    Article  CAS  PubMed  Google Scholar 

  19. McLennan KM, Skillings EA, Rebelo CJB et al (2015) Validation of an automatic recording system to assess behavioural activity level in sheep (Ovis aries). Small Rum Res 127:92–96

    Article  Google Scholar 

  20. Refenetti R (2016) Circadian physiology, 3rd edn. CRC Press, Raton

    Google Scholar 

  21. Morton AJ, Avanzo L (2011) Executive decision-making in the domestic sheep. PLoS One 6:e15752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McBride SD, Perentos N, Morton AJ (2015) A mobile, high-throughput semi-automated system for testing cognition in large non-primate animal models of Huntington disease. J Neurosci Methods 265:25–33

    Article  PubMed  Google Scholar 

  23. Knolle F, McBride S, Goncalves R, Morton AJ (2017) A stop-signal task for sheep: introduction and validation of a direct measure for the stop-signal reaction time. Anim Cogn 20(4):615–626

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rao AK, Quinn L, Marder KS (2005) Reliability of spatiotemporal gait outcome measures in Huntington’s disease. Mov Disord 20:1033–1037

    Article  PubMed  Google Scholar 

  25. Schramke S, Schuldenzucker V, Schubert R et al (2016) Behavioral phenotyping of minipigs transgenic for the Huntington gene. J Neurosci Methods 265:34–45

    Article  CAS  PubMed  Google Scholar 

  26. Hobbs-Chell H, King AJ, Sharratt H et al (2011) Data-loggers carried on a harness do not adversely affect sheep locomotion. Res Vet Sci 93:549–552

    Article  PubMed  Google Scholar 

  27. King AJ, Wilson AM, Wilshin SD et al (2012) Selfish-herd behaviour of sheep under threat. Curr Biol 22:561–562

    Article  CAS  Google Scholar 

  28. Strömbom D, Mann RP, Wilson AM et al (2014) Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J R Soc Interface 11:20140719

    Article  PubMed  PubMed Central  Google Scholar 

  29. Furmston T, Morton AJ, Hailes S (2015) A significance test for inferring affiliation networks from spatio-temporal data. PLoS One 10:e0132417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sawiak JS, Perumal SR, Rudiger SR et al (2015) Rapid and progressive regional brain atrophy in CLN6 Batten disease affected sheep measured with longitudinal magnetic resonance imaging. PLoS One 10:e0132331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goodman AO, Rogers L, Pilsworth S et al (2011) Asymptomatic sleep abnormalities are a common early feature in patients with Huntington’s disease. Curr Neurol Neurosci Rep 11:211–217

    Article  PubMed  Google Scholar 

  32. Lazar AS, Panin F, Goodman AO et al (2015) Sleep deficits but no metabolic deficits in premanifest Huntington’s disease. Ann Neurol 78:630–648

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goodman AO, Barker RA (2010) How vital is sleep in Huntington’s disease? J Neurol 257:882–897

    Article  CAS  PubMed  Google Scholar 

  34. Landau ME, Cannard KR (2003) EEG characteristics in juvenile Huntington’s disease: a case report and review of the literature. Epileptic Disord 5:145–148

    PubMed  Google Scholar 

  35. Kantor S, Szabo L, Varga J et al (2013) Progressive sleep and electroencephalogram changes in mice carrying the Huntington’s disease mutation. Brain 136:2147–2158

    Article  PubMed  Google Scholar 

  36. Fisher SP, Black SW, Schwartz MD et al (2013) Longitudinal analysis of the electroencephalogram and sleep phenotype in the R6/2 mouse model of Huntington’s disease. Brain 136:2159–2172

    Article  PubMed  Google Scholar 

  37. Perentos N, Martins AQ, Cumming R et al (2016a) An EEG investigation of sleep homeostasis in healthy and CLN5 Batten disease affected sheep. J Neurosci 36:8238–8249

    Article  CAS  PubMed  Google Scholar 

  38. Perentos N, Nicol AU, Martins AQ et al (2016b) Techniques for chronic monitoring of brain activity in freely moving sheep using wireless, longitudinal EEG recording. J Neurosci Methods. https://doi.org/10.1016/j.jneumeth.2016.11.010

  39. Perentos N, Martins AQ, Watson TC, Bartsch U (2015) Translational neurophysiology in sheep: measuring sleep and neurological dysfunction in CLN5 Batten disease affected sheep. Brain 138:862–874

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nicol AU, Perentos N, Martins AQ, Morton AJ (2016) Automated detection and characterisation of rumination in sheep using in vivo electrophysiology. Physiol Behav 163:258–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Morton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morton, A.J. (2018). Large-Brained Animal Models of Huntington’s Disease: Sheep. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics